Advertisement

Data Mining Techniques for Energy Efficiency Analysis of Discrete Production Lines

  • Rafal Cupek
  • Jakub Duda
  • Dariusz Zonenberg
  • Łukasz Chłopaś
  • Grzegorz Dziędziel
  • Marek Drewniak
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10449)

Abstract

Machine-level energy efficiency assessment supports the rapid detection of many technological problems related to a production cycle. The fast growth of data mining techniques has opened new possibilities that permit large amounts of gathered energy consumption data to be processed and analyzed automatically. However, the data that are available from control systems are not usually ready for such an analysis and require complex preparation – cleaning, integration, selection and transformation. This paper proposes a methodology for energy consumption data analysis that is based on a knowledge discovery application. The input information includes observations of the production system behavior and related energy consumption data. The proposed approach is illustrated on the use case of an energy consumption analysis that ws prepared for an automatic production line used in electronic manufacturing.

Keywords

Energy efficiency Data mining Manufacturing Execution System (MES) Industrial communication OPC UA (IEC 62541) 

Notes

Acknowledgment

This work was supported by the European Union from the FP7-PEOPLE-2013-IAPP AutoUniMo project “Automotive Production Engineering Unified Perspective based on Data Mining Methods and Virtual Factory Model” (grant agreement no. 612207) and research work financed from the funds for science in the years 2016–2017, which are allocated to an international co-financed project (grant agreement no. 3491/7.PR/15/2016/2).

References

  1. 1.
    Peng, Y., Dong, M., Zuo, M.J.: Current status of machine prognostics in condition-based maintenance: a review. Int. J. Adv. Manuf. Technol. 50(1), 297–313 (2010)CrossRefGoogle Scholar
  2. 2.
    Bunse, K., Vodicka, M., Schönsleben, P., Brülhart, M., Ernst, F.O.: Integrating energy efficiency performance in production management–gap analysis between industrial needs and scientific literature. J. Clean. Prod. 19(6), 667–679 (2011)CrossRefGoogle Scholar
  3. 3.
    Cupek, R., Drewniak, M., Zonenberg, D.: Online energy efficiency assessment in serial production-statistical and data mining approaches. In: 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), pp. 189–194 (2014)Google Scholar
  4. 4.
    Ziębiński, A., Świerc, S.: The VHDL implementation of reconfigurable MIPS processor. In: Cyran, K.A., Kozielski, S., Peters, J.F., Stańczyk, U., Wakulicz-Deja, A. (eds.) Man-Machine Interactions. Advances in Intelligent and Soft Computing, vol. 59, pp. 663–669. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-00563-3_69CrossRefGoogle Scholar
  5. 5.
    Flak, J., Gaj, P., Tokarz, K., Wideł, S., Ziębiński, A.: Remote monitoring of geological activity of inclined regions – the concept. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2009. CCIS, vol. 39, pp. 292–301. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02671-3_34CrossRefGoogle Scholar
  6. 6.
    Figueiredo, V., Rodrigues, F., Vale, Z., Gouveia, J.B.: An electric energy consumer characterization framework based on data mining techniques. IEEE Trans. Power Syst. 20(2), 596–602 (2005)CrossRefGoogle Scholar
  7. 7.
    Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, 3rd edn. Morgan Kaufmann, Burlington (2011)MATHGoogle Scholar
  8. 8.
    Duflou, J.R., Sutherland, J.W., Dornfeld, D., Herrmann, C., Jeswiet, J., Kara, S., et al.: Towards energy and resource efficient manufacturing: a processes and systems approach. CIRP Ann. Manuf. Technol. 61(2), 587–609 (2012)CrossRefGoogle Scholar
  9. 9.
    Cannata, A., Karnouskos, S., Taisch, M.: Energy efficiency driven process analysis and optimization in discrete manufacturing. In: 35th Annual Conference of IEEE Industrial Electronics, IECON 2009, pp. 4449–4454. IEEE (2009)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Rafal Cupek
    • 1
  • Jakub Duda
    • 1
  • Dariusz Zonenberg
    • 2
  • Łukasz Chłopaś
    • 2
  • Grzegorz Dziędziel
    • 2
  • Marek Drewniak
    • 2
  1. 1.Institute of InformaticsSilesian University of TechnologyGliwicePoland
  2. 2.AIUT Sp. z o.o. (Ltd.)GliwicePoland

Personalised recommendations