Advertisement

Enhanced Reliability of ADAS Sensors Based on the Observation of the Power Supply Current and Neural Network Application

  • Damian Grzechca
  • Adam Ziębiński
  • Paweł Rybka
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10449)

Abstract

Advanced Driver Assistance Systems (ADAS) are essential parts for developing the autonomous vehicle concept. They cooperate with different on-board car equipment to make driving safe and comfortable. There are many ways to monitor their behaviour and assess their reliability. The presented solution combines the versatility of applications (it can be used with almost any kind of sensors), low cost (data acquisition using this method requires only a simple electronic circuit) and requires no adjustments of the sensor’s software or hardware. Using this type of analysis, one can determine the device’s family, find any over- and under-voltages that can damage the sensor or even detect two-way CAN communication malfunctions. Since the data acquired is complex (and can be troublesome during processing) – one of the best solutions is to cope with the problem by using a variety of neural networks.

Keywords

ADAS Predictive maintenance Neural network CAN Data acquisition 

Notes

Acknowledgements

This work was supported by the European Union from the FP7-PEOPLE-2013-IAPP AutoUniMo project “Automotive Production Engineering Unified Perspective based on Data Mining Methods and Virtual Factory Model” (Grant Agreement No. 612207) and research work financed from the funds for science in the years 2016–2017, which are allocated to an international co-financed project (Grant Agreement No. 3491/7.PR/15/2016/2).

References

  1. 1.
    Khaitan, S.K., McCalley, J.D.: Design techniques and applications of cyberphysical systems: a survey. IEEE Syst. J. 9(2), 350–365 (2015)CrossRefGoogle Scholar
  2. 2.
    Wu, F.-J., Kao, Y.-F., Tseng, Y.-C.: From wireless sensor networks towards cyber physical systems. Pervasive Mob. Comput. 7(4), 397–413 (2011)CrossRefGoogle Scholar
  3. 3.
    Wang, Y., Vuran, M.C., Goddard, S.: Cyber-physical systems in industrial process control. ACM SIGBED Rev. 5(1), 1–2 (2008)CrossRefGoogle Scholar
  4. 4.
    Flak, J., Gaj, P., Tokarz, K., Wideł, S., Ziębiński, A.: Remote monitoring of geological activity of inclined regions – the concept. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2009. CCIS, vol. 39, pp. 292–301. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02671-3_34CrossRefGoogle Scholar
  5. 5.
    Li, R., Liu, C., Luo, Feng.: A design for automotive CAN bus monitoring system, pp. 1–5 (2008)Google Scholar
  6. 6.
    Maka, A., Cupek, R., Rosner, J.: OPC UA object oriented model for public transportation system. Presented at the 2011 Fifth UKSim European Symposium on Computer Modeling and Simulation (EMS), pp. 311–316 (2011)Google Scholar
  7. 7.
    Cupek, R., Huczala, L.: Passive PROFIET I/O OPC DA server. Presented at the IEEE Conference on Emerging Technologies & Factory Automation, ETFA 2009, pp. 1–5 (2009)Google Scholar
  8. 8.
    Jia, X., Hu, Z., Guan, H.: A new multi-sensor platform for adaptive driving assistance system (ADAS). In: 2011 9th World Congress on Intelligent Control and Automation, pp. 1224–1230 (2011)Google Scholar
  9. 9.
    Bengler, K., Dietmayer, K., Farber, B., Maurer, M., Stiller, C., Winner, H.: Three decades of driver assistance systems: review and future perspectives. IEEE Intell. Transp. Syst. Mag. 6(4), 6–22 (2014)CrossRefGoogle Scholar
  10. 10.
    Fildes, B., Keall, M., Thomas, P., Parkkari, K., Pennisi, L., Tingvall, C.: Evaluation of the benefits of vehicle safety technology: the MUNDS study. Accid. Anal. Prev. 55, 274–281 (2013)CrossRefGoogle Scholar
  11. 11.
    Pamuła, D., Ziębiński, A.: Securing video stream captured in real time. Prz. Elektrotech. 86(9), 167–169 (2010)Google Scholar
  12. 12.
    Ziębiński, A., Cupek, R., Grzechca, D., Chruszczyk, L.: Review of advanced driver assistance systems (ADAS). In: 13th International Conference of Computational Methods in Sciences and Engineering, April 2017Google Scholar
  13. 13.
    Mehala, N., Dahiya, R.: Motor current signature analysis and its applications in induction motor fault diagnosis. Int. J. Syst. Appl. Eng. Dev. 2(1), 29–31 (2007)Google Scholar
  14. 14.
    Somayajula, S.A., Sanchez-Sinencio, E., Pineda de Gyvez, J.: Analog fault diagnosis based on ramping power supply current signature clusters. IEEE Trans. Circ. Syst. II Analog Digit. Sig. Process. 43(10), 703–711 (2002)CrossRefGoogle Scholar
  15. 15.
    Zhang, X., Kang, J., Xiao, L., Zhao, J., Teng, H.: A new improved kurtogram and its application to bearing fault diagnosis. Shock Vib. 2015, Article ID 385412, 22 p. (2015). doi: 10.1155/2015/385412CrossRefGoogle Scholar
  16. 16.
    Mori, M., Fujishima, M.: Remote monitoring and maintenance system for CNC machine tools. Proced. CIRP 12, 7–12 (2013)CrossRefGoogle Scholar
  17. 17.
    Colledani, M., et al.: Design and management of manufacturing systems for production quality. CIRP Ann. Manuf. Technol. 63(2), 773–796 (2014)CrossRefGoogle Scholar
  18. 18.
    el Popovic, R., Randjelovic, Z., Manic, D.: Integrated hall-effect magnetic sensors. Sens. Actuators Phys. 91(1), 46–50 (2001)CrossRefGoogle Scholar
  19. 19.
    Larose, D.T.: k-nearest neighbor algorithm. In: Discovering Knowledge in Data, pp. 90–106. Wiley, Hoboken (2005). doi: 10.1002/0471687545.ch5
  20. 20.
    Talaska, T., Dlugosz, R., Wojtyna, R.: Current mode analog Kohonen neural network. In: Mixed Design of Integrated Circuits and Systems, pp. 251–252 (2007)Google Scholar
  21. 21.
    Moré, J.J.: The Levenberg-Marquardt algorithm: implementation and theory. In: Watson, G.A. (ed.) Numerical Analysis. LNM, vol. 630, pp. 105–116. Springer, Heidelberg (1978). doi: 10.1007/BFb0067700CrossRefGoogle Scholar
  22. 22.
    Burden, F., Winkler, D.: Bayesian regularization of neural networks. In: Livingstone, D.J. (ed.) Artificial Neural Networks. Methods and Applications, pp. 23–42. Humana Press, New York (2009). doi: 10.1007/978-1-60327-101-1_3CrossRefGoogle Scholar
  23. 23.
    Cupek, R., Ziebinski, A., Drewniak, M.: Ethernet-based test stand for a CAN network. In: 18th IEEE International Conference on Industrial Technology (2017)Google Scholar
  24. 24.
    Grzechca, D.: Soft fault clustering in analog electronic circuits with the use of self organizing neural network. Metrol. Meas. Syst. 18(4), 555–568 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Damian Grzechca
    • 1
  • Adam Ziębiński
    • 1
  • Paweł Rybka
    • 1
  1. 1.Electronics and Computer Science, Faculty of Automation ControlSilesian University of TechnologyGliwicePoland

Personalised recommendations