Advertisement

Computer User Verification Based on Typing Habits and Finger-Knuckle Analysis

  • Hossein Safaverdi
  • Tomasz Emanuel Wesolowski
  • Rafal Doroz
  • Krzysztof Wrobel
  • Piotr Porwik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10449)

Abstract

The paper presents preliminary research conducted to assess the potential of biometric methods fusion for continuous user verification. In this article a novel computer user identity verification method based on keystroke dynamics and knuckle images analysis is introduced. In the proposed solution the user verification is performed by means of classification. The introduced approach was tested experimentally using a database which comprises of keystroke dynamics data and knuckle images. The results indicate that the introduced methods fusion performs better than the single biometric approaches.

Keywords

Biometrics Verification Keystroke dynamics Finger knuckle 

References

  1. 1.
    Banerjee, S.P., Woodard, D.L.: Biometric authentication and identification using keystroke dynamics: a survey. J. Pattern Recogn. Res. 7, 116–139 (2012)CrossRefGoogle Scholar
  2. 2.
    Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24, 509–522 (2002)CrossRefGoogle Scholar
  3. 3.
    Ng, C.-C., Yap, M.H., Costen, N., Li, B.: Automatic wrinkle detection using hybrid hessian filter. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9005, pp. 609–622. Springer, Cham (2015). doi: 10.1007/978-3-319-16811-1_40CrossRefGoogle Scholar
  4. 4.
    Doroz, R., Porwik, P., Safaverdi, H.: The new multilayer ensemble classifier for verifying users based on keystroke dynamics. In: Núñez, M., Nguyen, N.T., Camacho, D., Trawiński, B. (eds.) ICCCI 2015. LNCS (LNAI), vol. 9330, pp. 598–605. Springer, Cham (2015). doi: 10.1007/978-3-319-24306-1_58CrossRefGoogle Scholar
  5. 5.
    Doroz, R., et al.: A new personal verification technique using finger-knuckle imaging. In: Nguyen, N.-T., Manolopoulos, Y., Iliadis, L., Trawiński, B. (eds.) ICCCI 2016. LNCS (LNAI), vol. 9876, pp. 515–524. Springer, Cham (2016). doi: 10.1007/978-3-319-45246-3_49CrossRefGoogle Scholar
  6. 6.
    Fager, M., Morris, K.: Quantifying the limits of fingerprint variability. Forensic Sci. Int. 254, 87–99 (2015)CrossRefGoogle Scholar
  7. 7.
    Ferrer, M.A., Travieso, C.M., Alonso, J.B.: Using hand knuckle texture for biometric identifications. IEEE Aerosp. Electron. Syst. Mag. 21(6), 23–27 (2006)CrossRefGoogle Scholar
  8. 8.
    Iwahori, Y., Hattori, A., Adachi, Y., Bhuyan, M.K., Woodham, R.J., Kasugai, K.: Automatic detection of polyp using Hessian Filter and HOG features. Procedia Comput. Sci. 60(1), 730–739 (2015)CrossRefGoogle Scholar
  9. 9.
    Kasprowski, P.: The impact of temporal proximity between samples on eye movement biometric identification. In: Saeed, K., Chaki, R., Cortesi, A., Wierzchoń, S. (eds.) CISIM 2013. LNCS, vol. 8104, pp. 77–87. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40925-7_8CrossRefGoogle Scholar
  10. 10.
    Koprowski, R., Teper, S.J., Weglarz, B., Wylegała, E., Krejca, M., Wróbel, Z.: Fully automatic algorithm for the analysis of vessels in the angiographic image of the eye fundus. Biomed. Eng. Online 11, 35 (2012)CrossRefGoogle Scholar
  11. 11.
    Kumar, A., Ravikanth, C.: Personal authentication using finger knuckle surface. IEEE Trans. Inf. Forensics Secur. 4(1), 98–110 (2009)CrossRefGoogle Scholar
  12. 12.
    Morales, A., Travieso, C.M., Ferrer, M.A., Alonso, J.B.: Improved finger-knuckle-print authentication based on orientation enhancement. Electron. Lett. 47(6), 380–382 (2011)CrossRefGoogle Scholar
  13. 13.
    Porwik, P., Doroz, R.: Self-adaptive biometric classifier working on the reduced dataset. In: Polycarpou, M., Carvalho, A.C.P.L.F., Pan, J.-S., Woźniak, M., Quintian, H., Corchado, E. (eds.) HAIS 2014. LNCS (LNAI), vol. 8480, pp. 377–388. Springer, Cham (2014). doi: 10.1007/978-3-319-07617-1_34CrossRefGoogle Scholar
  14. 14.
    Porwik, P., Doroz, R., Wrobel, K.: A new signature similarity measure. In: Proceedings of the 2009 World Congress on Nature and Biologically Inspired Computing, NABIC 2009, pp. 1022–1027 (2009)Google Scholar
  15. 15.
    Raiyn, J.: A survey of cyber attack detection strategies. Int. J. Secur. Appl. 8(1), 247–256 (2014)Google Scholar
  16. 16.
    Salem, M.B., Hershkop, S., Stolfo, S.J.: A survey of insider attack detection research. Adv. Inf. Secur. 39, 69–90 (2008)CrossRefGoogle Scholar
  17. 17.
    Usha, K., Ezhilarasan, M.: Finger knuckle biometrics - a review. Comput. Electr. Eng. 45, 249–259 (2015)CrossRefGoogle Scholar
  18. 18.
    Wesołowski, T.E., Porwik, P.: Keystroke data classification for computer user profiling and verification. In: Núñez, M., Nguyen, N.T., Camacho, D., Trawiński, B. (eds.) ICCCI 2015. LNCS, vol. 9330, pp. 588–597. Springer, Cham (2015). doi: 10.1007/978-3-319-24306-1_57CrossRefGoogle Scholar
  19. 19.
    Wesołowski, T.E., Porwik, P.: Computer user profiling based on keystroke analysis. In: Chaki, R., Cortesi, A., Saeed, K., Chaki, N. (eds.) Advanced Computing and Systems for Security. AISC, vol. 395, pp. 3–13. Springer, New Delhi (2016). doi: 10.1007/978-81-322-2650-5_1CrossRefGoogle Scholar
  20. 20.
    Wesolowski, T.E., Porwik, P., Doroz, R.: Electronic health record security based on ensemble classification of keystroke dynamics. Appl. Artif. Intell. 30, 521–540 (2016)CrossRefGoogle Scholar
  21. 21.
    Woodard, D.L., Flynn, P.J.: Finger surface as a biometric identifier. Comput. Vis. Image Underst. 100(3), 357–384 (2005)CrossRefGoogle Scholar
  22. 22.
    Xiong, M., Yang, W., Sun, C.: Finger-knuckle-print recognition using LGBP. In: Liu, D., Zhang, H., Polycarpou, M., Alippi, C., He, H. (eds.) ISNN 2011. LNCS, vol. 6676, pp. 270–277. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21090-7_32CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Computer ScienceUniversity of Silesia in KatowiceKatowicePoland

Personalised recommendations