Genetic Algorithm as Optimization Tool for Differential Cryptanalysis of DES6

  • Kamil Dworak
  • Urszula Boryczka
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10449)


This article presents a new differential attack on the Data Encryption Standard (DES) reduced to 6 rounds, with the usage of the genetic algorithm (GA). The objective of the proposed attack is to indicate the last encryption subkey, used in the sixth cipher round, which makes it possible to define 48 from 56 primary key bits. The remaining 8 bits may be guessed by executing a brute-force attack. An additional heuristic negation operator was introduced to improve local search of proposed algorithm named NGA. The algorithm is based on the basic techniques of differential cryptanalysis. The results of the proposed NGA attack were compared with the simple genetic algorithm (SGA) and the simulated annealing (SA) attacks.


Differential cryptanalysis Genetic algorithm DES Cryptography Simulated annealing 


  1. 1.
    Pieprzyk, J., Hardjono, T., Seberry, J.: Fundamentals of Computer Security. CRC Press, Inc., Boca Raton (2003)CrossRefGoogle Scholar
  2. 2.
    Stallings, W.: Cryptography and Network Security: Principles and Practice, 5th edn. Pearson, New York (2011)Google Scholar
  3. 3.
    Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. 4(1), 3–72 (1991)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Schneier, B.: Applied Cryptography: Protocols, Algorithms, and Source Code in C. Wiley, Hoboken (1996)zbMATHGoogle Scholar
  5. 5.
    Dworak, K., Boryczka, U.: Differential cryptanalysis of FEAL4 using evolutionary algorithm. In: Nguyen, N.-T., Manolopoulos, Y., Iliadis, L., Trawiński, B. (eds.) ICCCI 2016. LNCS, vol. 9876, pp. 102–112. Springer, Cham (2016). doi: 10.1007/978-3-319-45246-3_10CrossRefGoogle Scholar
  6. 6.
    Song, J., Zhang, H., Meng, Q., Wang, Z.: Cryptanalysis of four-round DES based on genetic algorithm. In: Proceedings of IEEE International Conference on Wireless Communication, Network and Mobile Computing, pp. 2326–2329. IEEE (2007)Google Scholar
  7. 7.
    Huseim, H.M.H., Bayoumi, B.I., Holail, F.S., Hasan, B.E.M., El-Mageed, M.Z.A.: A genetic algorithm for cryptanalysis of DES-8. Int. J. Netw. Secur. 5, 213–219 (2007)Google Scholar
  8. 8.
    Tadros, T., Hegazy, A.E.F., Badr, A.: Genetic algorithm for DES cryptanalysis genetic algorithm for DES cryptanalysis. Int. J. Comput. Sci. Netw. Secur. 10, 5–11 (2010)Google Scholar
  9. 9.
    Dworak, K., Nalepa, J., Boryczka, U., Kawulok, M.: Cryptanalysis of SDES using genetic and memetic algorithms. In: Król, D., Madeyski, L., Nguyen, N.T. (eds.) Recent Developments in Intelligent Information and Database Systems. SCI, vol. 642, pp. 3–14. Springer, Cham (2016). doi: 10.1007/978-3-319-31277-4_1CrossRefGoogle Scholar
  10. 10.
    Garg, P., Varshney, S., Bhardwaj, M.: Cryptanalysis of simplified data encryption standard using genetic algorithm. Am. J. Netw. Commun. 4, 32–36 (2015)CrossRefGoogle Scholar
  11. 11.
    Abd-Elmonim, W.G., Ghali, N.I., Hassanien, A.E., Abraham, A.: Known-plaintext attack of DES-16 using particle swarm optimization. In: Third World Congress on Nature and Biologically Inspired Computing, vol. 9330, pp. 12–16. IEEE (2011)Google Scholar
  12. 12.
    Jadon, S.S., Sharma, H., Kumar, E., Bansal, J.C.: Application of binary particle swarm optimization in cryptanalysis of DES. In: Deep, K., Nagar, A., Pant, M., Bansal, J.C. (eds.) Proceedings of the International Conference on SocProS 2011. AINSC, vol. 130, pp. 1061–1071. Springer, India (2012). doi: 10.1007/978-81-322-0487-9_97CrossRefGoogle Scholar
  13. 13.
    Nalini, N., Raghavendra, R.G.: Cryptanalysis of block ciphers via improved simulated annealing technique. In: Information Technology, ICIT, vol. 130, pp. 182–185. IEEE (2007)Google Scholar
  14. 14.
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer, London (1996). doi: 10.1007/978-3-662-03315-9CrossRefzbMATHGoogle Scholar
  15. 15.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing, Boston (1989)zbMATHGoogle Scholar
  16. 16.
    Menezes, A.J., Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1997)zbMATHGoogle Scholar
  17. 17.
    Stinson, D.R.: Cryptography: Theory and Practice. CRC Press, Inc., Boca Raton (1995)zbMATHGoogle Scholar
  18. 18.
    O’Connor, L.J.: An analysis of product ciphers based on the properties of Boolean functions. Ph.D. thesis, University of Waterloo, Waterloo (1992)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of SilesiaSosnowiecPoland
  2. 2.Future ProcessingGliwicePoland

Personalised recommendations