Adaptation to Market Development Through Price Setting Strategies in Agent-Based Artificial Economic Model

  • Petr Tucnik
  • Petr Blecha
  • Jaroslav Kovarnik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10448)


The paper is focused on the incorporation of costs in relation to the selection of the price setting strategies which, in general, represent crucial part of economic agents’ decision making. Study and research of efficient decision making related to the price setting are important especially in agent-based economic systems which are intended application area for obtained results. This paper provides detailed description of various cost types used in traditional economic analysis and an effort has been made to identify constant (i.e. stable) and/or dynamic factors, typically related to the volume of production) in the cost calculation. Simulation part supports provided discussion about these design questions of artificial economic models in several scenarios.


Agent Cost calculation Virtual economy Agent-based economic model Price setting 



The Financial support of the Specific Research Project “Autonomous Socio-Economics Systems” of FIM UHK is gratefully acknowledged.


  1. 1.
    Premm, M., Kirn, S.: A multiagent systems perspective on industry 4.0 supply networks. In: Müller, P.J., Ketter, W., Kaminka, G., Wagner, G., Bulling, N. (eds.) MATES 2015. LNCS, vol. 9433, pp. 101–118. Springer, Cham (2015). doi: 10.1007/978-3-319-27343-3_6CrossRefGoogle Scholar
  2. 2.
    Brusaferri, A., Ballarino, A., Carpanzano, E.: Distributed intelligent automation solutions for self-adaptive manufacturing plants. In: Ortiz, Á., Franco, R.D., Gasquet, P.G. (eds.) BASYS 2010. IAICT, vol. 322, pp. 205–213. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14341-0_24CrossRefGoogle Scholar
  3. 3.
    Bureš, V., Tučník, P.: Complex agent-based models: application of a constructivism in the economic research. Ekon. Manage. 17, 152–168 (2014)Google Scholar
  4. 4.
    Hamichi, S., Brée, D., Guessoum, Z., Mangalagiu, D.: A multi-agent system for adaptive production networks. In: Di Tosto, G., Van Dyke Parunak, H. (eds.) MABS 2009. LNCS, vol. 5683, pp. 49–60. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13553-8_5CrossRefGoogle Scholar
  5. 5.
    Skobelev, P., Budaev, D., Laruhin, V., Levin, E., Mayorov, I.: Practical approach and multi-agent platform for designing real time adaptive scheduling systems. In: Corchado, J.M., et al. (eds.) PAAMS 2014. CCIS, vol. 430, pp. 1–12. Springer, Cham (2014). doi: 10.1007/978-3-319-07767-3_1CrossRefGoogle Scholar
  6. 6.
    Chen, P., Zhu, L., Li, X.: Multi-resource balanced scheduling optimization based on self-adaptive genetic algorithm. In: Cai, Z., Tong, H., Kang, Z., Liu, Y. (eds.) ISICA 2010. CCIS, vol. 107, pp. 19–28. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-16388-3_3CrossRefGoogle Scholar
  7. 7.
    Steinbauer, G., Wotawa, F.: Model-based reasoning for self-adaptive systems – theory and practice. In: Cámara, J., de Lemos, R., Ghezzi, C., Lopes, A. (eds.) Assurances for Self-Adaptive Systems. LNCS, vol. 7740, pp. 187–213. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-36249-1_7CrossRefGoogle Scholar
  8. 8.
    Zaeh, M.F., Ostgathe, M., Geiger, F., Reinhart, G.: Adaptive job control in the cognitive factory. In: ElMaraghy, H.A. (ed.) Enabling Manufacturing Competitiveness and Economic Sustainability, pp. 10–17. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-23860-4_2CrossRefGoogle Scholar
  9. 9.
    Gehrke, J., Herzog, O., Langer, H., Malaka, R., Porzel, R., Warden, T.: An agent-based approach to autonomous logistic processes. Künstl. Intell. 24, 137–141 (2010)CrossRefGoogle Scholar
  10. 10.
    Walker, J.: Chapter 9 - The analysis of cost. In: Accounting in a Nutshell, 3rd edn., pp. 227–253. CIMA Publishing, Oxford (2009)CrossRefGoogle Scholar
  11. 11.
    Mahanty, A.K.: Chapter Nine - Theory of costs. In: Intermediate Microeconomics with Applications. Academic Press, New York, pp. 211–239 (1980)CrossRefGoogle Scholar
  12. 12.
    Weller, P.: 15 - Economic theory 2: Microeconomics A2 - Fletcher, John. In: Information Sources, 2nd edn., pp. 228–233. Butterworth-Heinemann, Oxford (1984)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of Hradec KraloveHradec KraloveCzech Republic

Personalised recommendations