The Knowledge Increase Estimation Framework for Ontology Integration on the Relation Level

  • Adrianna Kozierkiewicz-Hetmańska
  • Marcin Pietranik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10448)


The task of integration of sets of data or knowledge (regardless the choice of its representation) can be very daunting procedure, requiring a lot of computational resources and time. Authors claim that it is beneficial to develop a formal framework which could be used to estimate the profitability of the integration, ideally even before the integration even occurs. Therefore, a set of algorithms for such estimation of the increase of knowledge concerning relation level of ontology integration is proposed.


  1. 1.
    Bobrowski, M., Marré, M., Yankelevich, D.: Measuring data quality. Universidad de Buenos Aires. Report. 1999:99–002 (1999)Google Scholar
  2. 2.
    Flahive, A., Taniar, D., Rahayu, W.: Ontology as a Service (OaaS): a case for sub-ontology merging on the cloud. J. Supercomput. 65, 185–216 (2013). doi: 10.1007/s11227-011-0711-4CrossRefGoogle Scholar
  3. 3.
    Frank, A.U.: Data quality ontology: an ontology for imperfect knowledge. In: Winter, S., Duckham, M., Kulik, L., Kuipers, B. (eds.) COSIT 2007. LNCS, vol. 4736, pp. 406–420. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-74788-8_25CrossRefGoogle Scholar
  4. 4.
    Geisler, S., Weber, S., Quix, C.: An ontology-based data quality framework for data stream applications. In: 16th International Conference on Information Quality, pp. 145–159 (2011)Google Scholar
  5. 5.
    Kozierkiewicz-Hetmańska, A., Pietranik, M.: The knowledge increase estimation framework for ontology integration on the concept level. J. Intell. Fuzzy Syst. 32(2), 1161–1172 (2017). doi: 10.3233/JIFS-169116CrossRefzbMATHGoogle Scholar
  6. 6.
    Kozierkiewicz-Hetmańska, A., Pietranik, M., Hnatkowska, B.: The knowledge increase estimation framework for ontology integration on the instance level. In: Nguyen, N.T., Tojo, S., Nguyen, L.M., Trawiński, B. (eds.) ACIIDS 2017. LNCS, vol. 10191, pp. 3–12. Springer, Cham (2017). doi: 10.1007/978-3-319-54472-4_1CrossRefGoogle Scholar
  7. 7.
    Le, D.H., Dang, V.T.: Ontology-based disease similarity network for disease gene prediction Vietnam (2016). doi: 10.1007/40595-016-0063-3
  8. 8.
    Lozano-Tello, A., Gómez-Pérez, A.: Ontometric: a method to choose the appropriate ontology. J. Database Manage. 2(15), 1–18 (2004)CrossRefGoogle Scholar
  9. 9.
    Nguyen, N.T.: Advanced Methods for Inconsistent Knowledge Management. Springer, London (2008). doi: 10.1007/978-1-84628-889-0CrossRefzbMATHGoogle Scholar
  10. 10.
    Pietranik, M., Nguyen, N.T.: A multi-atrribute based framework for ontology aligning. Neurocomputing 146, 276–290 (2014). doi: 10.1016/j.neucom.2014.03.067CrossRefGoogle Scholar
  11. 11.
    Porello, D., Endriss, U.: Ontology merging as social choice: judgment aggregation under the open world assumption. J. Logic Comput. 24(6), 1229–1249 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Maedche, A., Staab, S.: Measuring similarity between ontologies. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS, vol. 2473, pp. 251–263. Springer, Heidelberg (2002). doi: 10.1007/3-540-45810-7_24CrossRefzbMATHGoogle Scholar
  13. 13.
    Tartir, S., Arpinar, I.B., Moore, M., Sheth, A.P., Aleman-Meza, B.: OntoQA: metric-based ontology quality analysis (2005).

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Adrianna Kozierkiewicz-Hetmańska
    • 1
  • Marcin Pietranik
    • 1
  1. 1.Faculty of Computer Science and ManagementWroclaw University of Science and TechnologyWroclawPoland

Personalised recommendations