Enhancing Cholera Outbreaks Prediction Performance in Hanoi, Vietnam Using Solar Terms and Resampling Data

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10448)

Abstract

A solar term is an ancient Chinese concept to indicate a point of season change in lunisolar calendars. Solar terms are currently in use in China and nearby countries including Vietnam. In this paper we propose a new solution to increase performance of cholera outbreaks prediction in Hanoi, Vietnam. The new solution is a combination of solar terms, training data resampling and classification methods. Experimental results show that using solar terms in combination with ROSE resampling and random forests method delivers high area under the Receiver Operating Characteristic curve (AUC), balanced sensitivity and specificity. Without interaction effects the solar terms help increasing mean of AUC by 12.66%. The most important predictor in the solution is Sun’s ecliptical longitude corresponding to solar terms. Among the solar terms, frost descent and start of summer are the most important.

Keywords

Cholera outbreaks prediction Solar terms Resampling 

References

  1. 1.
    Jutla, A., Whitcombe, E., Hasan, N., Haley, B., Akanda, A., Huq, A., Alam, M., Sack, R., Colwell, R.: Environmental factors influencing epidemic cholera. Am. J. Trop. Med. Hyg. 89(3), 597–607 (2013)CrossRefGoogle Scholar
  2. 2.
    Martinez, P.P., Reiner, R.C., Cash, B.A., Rodó, X., et al.: Cholera forecast for Dhaka, Bangladesh, with the 2015–2016 El Niño: lessons learned. PLoS ONE 12(3), e0172355 (2017)CrossRefGoogle Scholar
  3. 3.
    Ali, M., Kim, D.R., Yunus, M., Emch, M.: Time series analysis of cholera in Matlab, Bangladesh, during 1988–2001. J. Health Popul. Nutr. 31(1), 11–19 (2013)CrossRefGoogle Scholar
  4. 4.
    Reiner, R.C., King, A.A., Emch, M., Yunus, M., Faruque, A.S.G., Pascual, M.: Highly localized sensitivity to climate forcing drives endemic cholera in a megacity. Proc. Natl. Acad. Sci. U.S.A. 109, 2033–2036 (2012)CrossRefGoogle Scholar
  5. 5.
    Emch, M., Feldacker, C., Yunus, M., et al.: Local environmental predictors of cholera in Bangladesh and Vietnam. Am. J. Trop. Med. Hyg. 78(5), 823–832 (2008)Google Scholar
  6. 6.
    Xu, M., Cao, C.X., Wang, D.C., Kan, B., Jia, H.C., Xu, Y.F., Li, X.W.: District prediction of cholera risk in China based on environmental factors. Chin. Sci. Bull. 58(23), 2798–2804 (2013)CrossRefGoogle Scholar
  7. 7.
    Xu, M., Cao, C.X., Wang, D.C., Kan, B.: Identifying environmental risk factors of cholera in a coastal area with geospatial technologies. Int. J. Environ. Res. Public Health 12, 354–370 (2015)CrossRefGoogle Scholar
  8. 8.
    Kelly-Hope, L.A., Alonso, W.J., Thiem, V.D., et al.: Temporal trends and climatic factors associated with bacterial enteric diseases in Vietnam 1991–2001. Environ. Health Perspect. 116(1), 7–12 (2008)CrossRefGoogle Scholar
  9. 9.
    Le, T.N.A., Ngo, T.O., Lai, T.H.T., Le, H.Q., Nguyen, H.C., Ha, Q.T.: An experimental study on cholera modeling in Hanoi. In: Proceedings of Asian XI Conference on Intelligent Information and Database Systems 2016, pp. 230–240 (2016)Google Scholar
  10. 10.
    Chau, N.H., Ngoc Anh, L.T.: Using local weather and geographical information to predict cholera outbreaks in Hanoi, Vietnam. In: Nguyen, T.B., Do, T.V., Le Thi, H.A., Nguyen, N.T. (eds.) Advanced Computational Methods for Knowledge Engineering. AISC, vol. 453, pp. 195–212. Springer, Cham (2016). doi: 10.1007/978-3-319-38884-7_15 CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Qian, C., Yan, Z., Fu, C.: Climatic changes in the twenty-four solar terms during 1960–2008. Chin. Sci. Bull. Atmos. Sci. 57(2–3), 276–286 (2012)CrossRefGoogle Scholar
  13. 13.
    Hong Kong Observatory’s solar term introduction. http://www.weather.gov.hk/gts/time/24solarterms.htm
  14. 14.
    Hong Kong observatory’s climatology for the 24 solar terms. http://www.weather.gov.hk/cis/statistic/ext_st_vernal_equinox_e.htm?element=0&operation=Submit
  15. 15.
    Kuhn, M., Johnson, K.: Applied Predictive Modeling. Springer, New York (2013)CrossRefMATHGoogle Scholar
  16. 16.
    He, H., Mai, Y.: Imbalanced Learning: Foundations, Algorithms and Applications. Wiley, Hoboken (2013)CrossRefGoogle Scholar
  17. 17.
    Jeni, L.A., Cohn, J.F., Torre, F.D.L.: Facing imbalanced data recommendations for the use of performance metrics. In: ACII 2013 Proceedings of the 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction (2013)Google Scholar
  18. 18.
    Montgomery, D.C.: Design and Analysis of Experiments, 8th edn. Wiley, Hoboken (2013)Google Scholar
  19. 19.
    Micheaux, P., Drouilhet, R., Liquet, B.: The R Software: Fundamentals of Programming and Statistical Analysis. Springer, New York (2013)CrossRefMATHGoogle Scholar
  20. 20.
  21. 21.
    Faraway, J.: Linear Models with R, 2nd edn. CRC Press, Boca Raton (2015)MATHGoogle Scholar
  22. 22.
  23. 23.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of Information TechnologyVNUH University of Engineering and TechnologyHanoiVietnam

Personalised recommendations