Collective Intelligence Supporting Trading Decisions on FOREX Market

  • Jerzy Korczak
  • Marcin Hernes
  • Maciej Bac
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10448)


The aim of the paper is to present an approach to support decision-making on financial markets using an idea of collective intelligence implemented as a multi-agent system, called A-Trader. A-Trader is integrated with the Meta Trader system which provides online data, including ticks of any securities, goods or currency pairs. Many of the implemented agents apply AI methods, communicate their trading advices to the supervisor that integrates all information and suggests the trading decision. The first part of the paper presents the architecture and functionalities of A-Trader. The structure and functionality of the agents and approach to the building of the trading strategies are detailed. The last section describes the results of the performance evaluation of selected trading strategies on FOREX.


Multi-agent systems Supporting trading decision-making FOREX market 


  1. 1.
    Bohm, V., Wenzelburger, J.: On the performance of efficient portfolios. J. Econ. Dyn. Control 29(4), 721–740 (2005)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Chiarella, C., Dieci, R., Gardini, L.: Asset price and wealth dynamics in a financial market with heterogeneous agents. J. Econ. Dyn. Control 30(9–10), 1755–1786 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Berlin (2003)CrossRefGoogle Scholar
  4. 4.
    Hernes, M., Sobieska-Karpińska, J.: Application of the consensus method in a multiagent financial decision support system. Inf. Syst. e-Bus. Manag. 14(1), 167–185 (2016)CrossRefGoogle Scholar
  5. 5.
    Ivanović, M., Vidaković, M., Budimac, Z., Mitrović, D.: A scalable distributed architecture for client and server-side software agents. Vietnam J. Comput. Sci. 4(2), 127–137 (2017)CrossRefGoogle Scholar
  6. 6.
    Jajuga, K., Jajuga, T.: Inwestycje: Instrumenty Finansowe, Ryzyko Finansowe, Inżynieria Finansowa. PWN, Warszawa (2000)Google Scholar
  7. 7.
    Khosravi, H., Shiri, M.E., Khosravi, H., Iranmanesh, E., Davoodi, A.: TACtic-a multi behavioral agent for trading agent competition. In: Sarbazi-Azad, H., Parhami, B., Miremadi, S.-G., Hessabi, S. (eds.) CSICC 2008. CCIS, vol. 6, pp. 811–815. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-89985-3_109CrossRefGoogle Scholar
  8. 8.
    Korczak, J., Hernes, M., Bac M.: Risk avoiding strategy in multi-agent trading system. In: Proceedings of Federated Conference Computer Science and Information Systems (FedCSIS), Kraków, pp. 1131–1138 (2013)Google Scholar
  9. 9.
    Korczak, J., Hernes, M., Bac, M.: Fuzzy logic as agents’ knowledge representation in A-Trader system. In: Ziemba, E. (ed.) Information Technology for Management. LNBIP, vol. 243, pp. 109–124. Springer, Cham (2016). doi: 10.1007/978-3-319-30528-8_7CrossRefGoogle Scholar
  10. 10.
    Lento, C.: A combined signal approach to technical analysis on the S&P 500. J. Bus. Econ. Res. 6(8), 41–51 (2008)Google Scholar
  11. 11.
    Nguyen, N.T.: Using consensus methodology in processing inconsistency of knowledge. In: Last, M., et al. (eds.) Advances in Web Intelligence and Data Mining. SCI, pp. 161–170. Springer, Heidelberg (2006). doi: 10.1007/3-540-33880-2_17CrossRefGoogle Scholar
  12. 12.
    Sher, G.I.: Forex trading using geometry sensitive neural networks. In: Soule, T. (ed.) Proceedings of the 14th Annual Conference Companion on Genetic and Evolutionary Computation (GECCO 2012), pp. 1533–1534. ACM, New York (2012)Google Scholar
  13. 13.
    Sycara, K.P., Decker, K., Zeng, D.: Intelligent agents in portfolio management. In: Jennings, N., Wooldridge, M. (eds.) Agent Technology, pp. 267–282. Springer, New York (2002)Google Scholar
  14. 14.
    Tatikunta, R., Rahimi, S., Shrestha, P., Bjursel, J.: TrAgent: a multi-agent system for stock exchange. In: Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IATW 2006), pp. 505–509. IEEE Computer Society, Washington, DC (2006)Google Scholar
  15. 15.
    Westerhoff, F.H.: Multiasset market dynamics. Macroecon. Dyn. 8(2011), 596–616 (2011)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Wrocław University of EconomicsWrocławPoland

Personalised recommendations