Skip to main content

Robustness Sensitivities in Large Networks

Part of the Lecture Notes in Control and Information Sciences - Proceedings book series (LNCOINSPRO)

Abstract

This article focuses on developing a framework to assess robustness in large interconnected networks that arise frequently in many socioeconomic networks such as transportation, economics, and opinion dynamics. We first introduce the idea of “asymptotic” resilience, i.e., a measure of robustness to disturbances, as the network size increases, keeping the underlying structure invariant. We argue that such a notion of robustness is different from existing ideas in robust control theory that do not account for network topology and dimension. Under this new framework, we formulate a hierarchy of resilience for different network topologies. We present examples of commonly encountered network topologies and comment on their resilience. We then provide a formal characterization of how edge link perturbation affects resilience in large networks. Further, we show how each node of the network contributes to its resilience and identify critical nodes that become “fragile” as the network dimension grows. A major contribution of our work is that the analysis is no longer limited to undirected networks, as in previous literature.

Keywords

  • Edge Links
  • Large Interconnected Network
  • Nodal Volatilities
  • Standard Control Theory
  • Fragile Link

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-67068-3_6
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-67068-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 6.1
Fig. 6.2
Fig. 6.3
Fig. 6.4

References

  1. Acemoglu, D., Ozdaglar, A., Tahbaz-Salehi, A.: Cascades in networks and aggregate volatility. National Bureau of Economic Research (2010)

    Google Scholar 

  2. Acemoglu, D., Ozdaglar, A., Tahbaz-Salehi, A.: Microeconomic origins of macroeconomic tail risks. National Bureau of Economic Research (2015)

    Google Scholar 

  3. Acemoglu, D., Carvalho, V.M., Ozdaglar, A., Tahbaz-Salehi, A.: The network origins of aggregate fluctuations. Econometrica 80(5), 1977–2016 (2012)

    CrossRef  MathSciNet  MATH  Google Scholar 

  4. Borovykh, N., Spijker, M.N.: Resolvent conditions and bounds on the powers of matrices, with relevance to numerical stability of initial value problems. J. Comput. Appl. Math. 125, 41–56 (2000)

    CrossRef  MathSciNet  MATH  Google Scholar 

  5. Cao, M., Spielman, D.A., Morse, S.: A lower bound on convergence of a distributed network consensus algorithm. In: IEEE Decision and Control, and European Control Conference, CDC-ECC, pp. 2356–2361 (2005)

    Google Scholar 

  6. Como, G., Fagnani, F.: From local averaging to emergent global behaviors: the fundamental role of network interconnections. http://arxiv.org/abs/1509.08572 (2015)

  7. Demetrius, L., Manke, T.: Robustness and network evolution-an entropic principle. Phys. A Stat. Mech. Appl. 346(3), 682–696 (2005)

    CrossRef  Google Scholar 

  8. Dullerud, G.E., Paganini, F.: A Course in Robust Control Theory, vol. 6. Springer, New York (2000)

    Google Scholar 

  9. Herman, I., Martinec, D., Hurák, Z., Šebek, M.: Nonzero bound on Fiedler eigenvalue causes exponential growth of h-infinity norm of vehicular platoon. IEEE Trans. Autom. Control 60(8), 2248–2253 (2015)

    CrossRef  MathSciNet  MATH  Google Scholar 

  10. Huang, Q., Yuan, Y., Gonçalves, J., Dahleh, M.A.: \(\cal{H}_2\) norm based network volatility measures. In: American Control Conference (ACC), pp. 3310–3315. IEEE (2014)

    Google Scholar 

  11. Kwon, W.H., Moon, Y.S., Ahn, S.C.: Bounds in algebraic Riccati and Lyapunov equations: a survey and some new results. Int. J. Control 64(3), 377–389 (1996)

    CrossRef  MathSciNet  MATH  Google Scholar 

  12. Leonard, N.E., Scardovi, L., Young, G.F.: Robustness of noisy consensus dynamics with directed communication. In: American Control Conference (ACC), pp. 6312–6317. IEEE (2010)

    Google Scholar 

  13. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. American Mathematical Society (2009)

    Google Scholar 

  14. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)

    CrossRef  MATH  Google Scholar 

  15. Olshevsky, A., Tsitsiklis, J.N.: Degree fluctuations and the convergence time of consensus algorithms. IEEE Trans. Autom. Control 58, 2626–2631 (2013)

    CrossRef  MathSciNet  MATH  Google Scholar 

  16. Sandhu, R., Georgiou, T., Tannenbaum, A.: Market Fragility, Systemic Risk, and Ricci Curvature. http://arxiv.org/abs/1505.05182 (2015)

  17. Sarkar, T., Roozbehani, M., Dahleh, M.A.: Robustness scaling in large networks. In: American Control Conference (ACC), pp. 197–202. IEEE (2016)

    Google Scholar 

  18. Sarkar, T.: Understanding resilience in large networks. SM thesis. http://dspace.mit.edu/handle/1721.1/107374 (2016)

  19. Scardovi, L., Sepulchre, R.: Synchronization in networks of identical linear systems. Automatica 45, 2557–2562 (2009)

    CrossRef  MathSciNet  MATH  Google Scholar 

  20. Siami, M., Motee, N.: Fundamental limits and tradeoffs on disturbance propagation in linear dynamical networks. IEEE Trans. Autom. Control 61, 4055–4062 (2016)

    CrossRef  MathSciNet  MATH  Google Scholar 

  21. Xia, T., Scardovi, L.: Output-feedback synchronizability of linear time-invariant systems. Syst. Control Lett. 94, 152–158 (2016)

    CrossRef  MathSciNet  MATH  Google Scholar 

  22. Zhao, Y., Minero, P., Gupta, V.: On disturbance propagation in vehicle platoon control systems. In: American Control Conference (ACC), pp. 6041–6046 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Sarkar, T., Roozbehani, M., Dahleh, M.A. (2018). Robustness Sensitivities in Large Networks. In: Tempo, R., Yurkovich, S., Misra, P. (eds) Emerging Applications of Control and Systems Theory. Lecture Notes in Control and Information Sciences - Proceedings. Springer, Cham. https://doi.org/10.1007/978-3-319-67068-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67068-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67067-6

  • Online ISBN: 978-3-319-67068-3

  • eBook Packages: EngineeringEngineering (R0)