Skip to main content

Collective Formation Control of Multiple Constant-Speed UAVs with Limited Interactions

  • Chapter
  • First Online:
Emerging Applications of Control and Systems Theory

Part of the book series: Lecture Notes in Control and Information Sciences - Proceedings ((LNCOINSPRO))

  • 1182 Accesses

Abstract

In this chapter, we consider coordination control of a group of UAV agents with constant and in general nonidentical speeds. The control input is designed to steer their orientations and the control objective is to achieve a desired formation configuration for all the agents subject to constant-speed constraints. Through a formation feasibility analysis by a three-agent example, we show that it is generally impossible to control and maintain a formation by constant-speed agents if target formation shapes are defined by agents’ actual positions. We then adopt a circular motion center as a virtual position for each agent to define the target formation shape. Two different formation design approaches, namely, a displacement-based approach and a distance-based approach, are discussed in detail to coordinate a group of constant-speed agents in achieving a target formation with stable circular motions via limited interactions.

G. S. Seyboth is now with Robert Bosch Automotive Steering GmbH.

Text and figures of this chapter were reproduced from Z. Sun and B.D.O. Anderson, Formation feasibility on coordination control of networked heterogeneous systems with drift terms, IEEE 55th Conference on Decision and Control (CDC), IEEE, 2016, 3462–3467. https://doi.org/10.1109/CDC.2016.7798788.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Section 2.3 of this chapter includes material reproduced with permission from Sun, Z., Anderson, B.D.O.: Formation feasibility on coordination control of networked heterogeneous systems with drift terms. In: Proc. of the 55th Conference on Decision and Control, pp. 3462–3467. IEEE 2016.

References

  1. Anderson, B.D.O., Fidan, B., Yu, C., Walle, D.: UAV formation control: theory and application. In: Recent Advances in Learning and Control, pp. 15–33. Springer (2008)

    Google Scholar 

  2. Anderson, B.D.O., Yu, C., Fidan, B., Hendrickx, J.M.: Rigid graph control architectures for autonomous formations. IEEE Control Syst. Mag. 28(6), 48–63 (2008)

    Article  MathSciNet  Google Scholar 

  3. Briñón-Arranz, L., Seuret, A., Canudas-de Wit, C.: Cooperative control design for time-varying formations of multi-agent systems. IEEE Trans. Autom. Control 59(8), 2283–2288 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cao, Y., Yu, W., Ren, W., Chen, G.: An overview of recent progress in the study of distributed multi-agent coordination. IEEE Trans. Industr. Inf. 9(1), 427–438 (2013)

    Article  Google Scholar 

  5. Dimarogonas, D.V., Kyriakopoulos, K.J.: On the rendezvous problem for multiple nonholonomic agents. IEEE Trans. Autom. Control 52(5), 916–922 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fidan, B., Gazi, V., Zhai, S., Cen, N., Karatas, E.: Single-view distance-estimation-based formation control of robotic swarms. IEEE Trans. Industr. Electron. 60(12), 5781–5791 (2013)

    Article  Google Scholar 

  7. Francis, B.A., Maggiore, M.: Flocking and Rendezvous in Distributed Robotics. Springer (2016)

    Google Scholar 

  8. Hendrickson, B.: Conditions for unique graph realizations. SIAM J. Comput. 21(1), 65–84 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Krick, L., Broucke, M.E., Francis, B.A.: Stabilisation of infinitesimally rigid formations of multi-robot networks. Int. J. Control 82(3), 423–439 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lin, Z., Francis, B.A., Maggiore, M.: Necessary and sufficient graphical conditions for formation control of unicycles. IEEE Trans. Autom. Control 50(1), 121–127 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Liu, T., Jiang, Z.P.: Distributed formation control of nonholonomic mobile robots without global position measurements. Automatica 49(2), 592–600 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Marshall, J.A., Broucke, M.E., Francis, B.A.: Pursuit formations of unicycles. Automatica 42(1), 3–12 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mesbahi, M., Egerstedt, M.: Graph theoretic methods in multiagent networks. Princeton University Press (2010)

    Google Scholar 

  14. Oh, K.K., Park, M.C., Ahn, H.S.: A survey of multi-agent formation control. Automatica 53, 424–440 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ren, W., Beard, R.W.: Distributed Consensus in Multi-Vehicle Cooperative Control. Springer, London (2008)

    Book  MATH  Google Scholar 

  16. Sepulchre, R., Paley, D.A., Leonard, N.E.: Stabilization of planar collective motion: all-to-all communication. IEEE Trans. Autom. Control 52(5), 811–824 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sepulchre, R., Paley, D.A., Leonard, N.E.: Stabilization of planar collective motion with limited communication. IEEE Trans. Autom. Control 53(3), 706–719 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Seyboth, G.S.: On distributed and cooperative control design for networks of dynamical systems. Ph.D. thesis, University of Stuttgart (2016)

    Google Scholar 

  19. Seyboth, G.S., Wu, J., Qin, J., Yu, C., Allgower, F.: Collective circular motion of unicycle type vehicles with nonidentical constant velocities. IEEE Trans. Control Netw. Syst. 1(2), 167–176 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sun, Z., Anderson, B.D.O.: Formation feasibility on coordination control of networked heterogeneous systems with drift terms. In: Proceedings of the 55th Conference on Decision and Control, pp. 3462–3467. IEEE (2016)

    Google Scholar 

  21. Sun, Z., Mou, S., Anderson, B.D.O., Cao, M.: Exponential stability for formation control systems with generalized controllers: a unified approach. Syst. Control Lett. 93, 50–57 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sun, Z., Seyboth, G.S., Anderson, B.D.O.: Collective control of multiple unicycle agents with non-identical constant speeds: tracking control and performance limitation. In: Proceedings of the 2015 IEEE Multi-Conference on Systems and Control (MSC), pp. 1361–1366. IEEE (2015)

    Google Scholar 

  23. Swartling, J.O., Shames, I., Johansson, K.H., Dimarogonas, D.V.: Collective circumnavigation. Unmanned Syst. 2(03), 219–229 (2014)

    Article  Google Scholar 

  24. Tabuada, P., Pappas, G.J., Lima, P.: Motion feasibility of multi-agent formations. IEEE Trans. Rob. 21(3), 387–392 (2005)

    Article  Google Scholar 

  25. Xargay, E., Dobrokhodov, V., Kaminer, I., Pascoal, A.M., Hovakimyan, N., Cao, C.: Time-critical cooperative control of multiple autonomous vehicles. IEEE Control Syst. Mag. 32(5), 49 (2012)

    Article  MathSciNet  Google Scholar 

  26. Zheng, R., Liu, Y., Sun, D.: Enclosing a target by nonholonomic mobile robots with bearing-only measurements. Automatica 53, 400–407 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Research Council under grant DP130103610 and DP160104500, and the DAAD-Go8 German–Australian Collaboration Project. Zhiyong Sun was supported by the Prime Minister’s Australia Asia Incoming Endeavour Postgraduate Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anderson, B.D.O., Sun, Z., Seyboth, G.S., Yu, C. (2018). Collective Formation Control of Multiple Constant-Speed UAVs with Limited Interactions. In: Tempo, R., Yurkovich, S., Misra, P. (eds) Emerging Applications of Control and Systems Theory. Lecture Notes in Control and Information Sciences - Proceedings. Springer, Cham. https://doi.org/10.1007/978-3-319-67068-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67068-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67067-6

  • Online ISBN: 978-3-319-67068-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics