Skip to main content

A Review of the State of the Art in Hindi Question Answering Systems

  • Chapter
  • First Online:
Intelligent Natural Language Processing: Trends and Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 740))

Abstract

Question Answering Systems (QAS) are tools to retrieve precise answers for user questions from a large set of text documents. Researchers from information retrieval and natural language processing community have put tremendous efforts to improve the performance of QASs across several languages. However, Hindi, the fourth most spoken language has not seen a proportional development in the field of question answering to an extent that information seekers accept QASs as a good alternative of search engines. In this chapter, a pipelined architecture for the development of QASs has been explained in the context of English and Hindi languages. This chapter also reviews the developments taking place in Hindi QASs while explaining the challenges faced by researchers in developing Hindi QASs. To encourage and support the new researchers in conducting researches in Hindi QASs, a list of techniques, tools and linguistic resources required to implement the components of a QAS are described in this chapter in a simple and persuasive manner. Finally, the future directions for research in Hindi QASs have been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Notice that one question can be paraphrased and asked using more than one pattern, getting more than one surface form that share the same meaning. For example the following questions should get the same answer: “During which month tourists visit Kashmir the most?”, “What month do tourists visit Kashmir the most?”, “Which month do tourists visit Kashmir the most?”, and “When do tourists visit Kashmir the most?”.

  2. 2.

    List of Hindi stopwords, http://members.unine.ch/jacques.savoy/clef/hindiST.txt.

  3. 3.

    A shallow parser, http://ltrc.iiit.ac.in/showfile.php?filename=downloads/shallow_parser.php.

  4. 4.

    A Hindi stemmer, e http://research.variancia.com/hindi_stemmer/.

  5. 5.

    Hindi POS Tagger, http://sivareddy.in/downloads#hindi_tools.

  6. 6.

    Apache OpenNLP, http://opennlp.apache.org/download.html.

  7. 7.

    Pre-trained models for OpenNLP, http://opennlp.sourceforge.net/models-1.5/.

  8. 8.

    WordNet, http://wordnet.princeton.edu/wordnet/download/.

  9. 9.

    Hindi WordNet, http://www.cfilt.iitb.ac.in/wordnet/webhwn/.

  10. 10.

    Python implementation of Hindi WordNet, http://sivareddy.in/downloads#python-hindi-wordnet.

  11. 11.

    IndoWordNet, http://www.cfilt.iitb.ac.in/indowordnet/index.jsp.

  12. 12.

    Hindi Wikipedia, https://hi.wikipedia.org/wiki/िवशेष:/Statistics, accessed on January, 25, 2017.

  13. 13.

    DBPedia, http://wiki.dbpedia.org/about, accessed on January, 25, 2017.

  14. 14.

    HindiWalC corpus, https://www.sketchengine.co.uk/hindiwac-corpus/.

  15. 15.

    Lucene, http://lucene.apache.org/core/.

  16. 16.

    Lucene classes for Hindi, https://lucene.apache.org/core/4_1_0/analyzers-common/org/apache/lucene/analysis/hi/package-summary.html.

  17. 17.

    GATE, http://gate.ac.uk/.

  18. 18.

    QANUS, http://www.qanus.com/.

  19. 19.

    True Knowledge, http://www.evi.com/.

References

  1. Buscaldi, D., Rosso, P.: Mining knowledge from Wikipedia for the question answering task. In: Proceedings of the 5th International Conference on Language Resources and Evaluation (LREC’06), pp. 727–730 (2011)

    Google Scholar 

  2. Dolvera-Lobo, M.-D., Gutiérrez-Artacho, J.: Multilingual question-answering system in biomedical domain on the Web: an evaluation, Lect.e Notes Comput. Sci. 6941, 83–88 (2011)

    Google Scholar 

  3. Moldovan, D., Harabagiu, S., Pasca, M., Mihalcea, R., Girju, R., Goodrum R., Rus, V.: The structure and performance of an open-domain question answering system. In Proceedings of the Conference of the Association for Computational Linguistics (ACL-2000), pp. 563–570 (2000)

    Google Scholar 

  4. Moldovan, D., Harabagiu, S., Girju, R., Morarescu, P., Lacatusu, F., Novischi, A., Badulescu, A., Bolohan, O.: LCC tools for question answering. In: Proceedings of the 11th Text REtrieval Conference TREC-2002, NIST, Gaithersburg (2002)

    Google Scholar 

  5. Efthimiadis, E.N.: Query expansion. Ann. Rev. Inf. Syst. Technol. 31, 121–187 (1996)

    Google Scholar 

  6. Renals, S., Abberly D.: The THISLSDR system at TREC-9. In: Proceedings of 9th Text Retrieval conference, Gaithersburg, MD (2000)

    Google Scholar 

  7. Clarke, C.L.A., Cormack, G.V., Kisman, D.I.E., Lynam, T.R.: Question answering by passage selection (MultiText experiments for TREC-9). In: Voorhees, E., Harman, D. (eds.) Proceedings of the Ninth Text REtrieval Conference (TREC-9, pp. 673–683), NIST Special Publication (2000)

    Google Scholar 

  8. Araujo, L., Pérez-Agüera, J.R.: Improving query expansion with stemming terms: a new genetic algorithm approach. In: Proceedings of the 8th European Conference on Evolutionary Computation in Combinatorial Optimization, pp. 182–193 (2008)

    Google Scholar 

  9. Li, X., Yang, W.Z.: Research on personalized document retrieval based on user interest model. In: Proceedings of 7th International Conference on, Computer Science & Education, pp. 1771–1773 (2012)

    Google Scholar 

  10. Lee, D.L., Chuang, H., Seamons, K.: Document ranking and the vector space model. IEEE Softw. 14(2), 67–75 (1997)

    Google Scholar 

  11. Crestani, F., Lalmas, M., van Rijsbergen, C.J., Campbell, I.: Is this document relevant? Probably. A survey of probabilistic models in information retrieval. ACM Comput. Surv. 30, 528–552 (1998)

    Google Scholar 

  12. Henzinger, Monika, R.: Hyperlink analysis for the web. IEEE Internet Comput. 5(1), 45–50 (2001)

    Article  Google Scholar 

  13. Brin, S., Page, L.: The anatomy of a large-scale hyper-textual web search engine. In: Proceedings of the Seventh International World Wide Web Conference, pp. 107–117, Elsevier Science, New York (1998)

    Google Scholar 

  14. Baeza-Yates, R., Davis, E.: Web page ranking using link attributes. In: Proceedings of the 13th International World Wide Web Conference on Alternate Track Papers & Posters, pp. 328–329 (2004)

    Google Scholar 

  15. Lempel, R., Moran, S.P.: The stochastic approach for link-structure analysis (SALSA) and the TKC effect. Comput. Netw. Int. J. Comput. Telecommun. Netw. Elsevier North-Holland, New York 33(1–6), pp 387-401 (2000)

    Google Scholar 

  16. Vallet, D., Fernández, M., Castells, P.: An Ontology-based information retrieval model. In: Gómez-Pérez, A., Euzenat, J. (eds.) Proceedings of the 2nd European Semantic Web Conference (ESWC 2005), Heraklion, Greece, Lecture Notes in Computer Science, vol. 3532, pp. 455–470. Springer (2005)

    Google Scholar 

  17. Tellex, S., Katz, B., Lin, J., Fernandes, A., Marton, G.: Quantitative evaluation of passage retrieval algorithms for Question Answering. In: Proceedings of the 26th Annual ACM SIGIR International Conference on Research and Development in Information Retrieval (SIGIR 2003), Toronto, Canada (2003)

    Google Scholar 

  18. Wang, D.S.: A domain-specific question answering system based on ontology and question templates. In: Proceedings of 11th ACIS International Conference on Software Engineering Artificial Intelligence Networking and Parallel/Distributed Computing (SNPD), pp. 151–156 (2010)

    Google Scholar 

  19. AbdelRahman, S., Elarnaoty, M., Magdy, M., Fahmy, A.: Integrated machine learning techniques for Arabic named entity recognition. Int. J. Comput. Sci. Issues 7(4)(3), 27–36 (2010)

    Google Scholar 

  20. Katz, B., Lin, J.: Selectively using relations to improve precision in question answering. In: Proceedings of the EACL 2003 Workshop on Natural Language Processing for Question Answering, Budapest, Hungary, pp. 43–50 (2003)

    Google Scholar 

  21. Harabagiu, S.M., Pasca, M.A., Maiorano, S.J.: Experiments with open-domain textual question answering. In: Proceedings of the 18th International Conference on Computational Linguistics, Association for Computational Linguistics, Saarbrucken, Germany, pp. 292–298 (2000)

    Google Scholar 

  22. Chu-Carroll, J., Prager, J., Czuba, K., Ferrucci, D., Duboue, P.: Semantic search via XML Fragments: a high-precision approach to IR. In: Proceedings of the Annual International ACM SIGIR Conference on Research and Development on Information Retrieval, Seattle, pp. 445–452 (2006)

    Google Scholar 

  23. Shaalan, K.: Rule-based approach in Arabic natural language processing. Special Issue on Advances in Arabic Language Processing, the International Journal on Information and Communication Technologies (IJICT), vol. 3(3), pp 11–19. Serial Publications, New Delhi, India (2010)

    Google Scholar 

  24. Shaalan, K., Oudah, M.: A hybrid approach to Arabic named entity recognition. Journal of Information Science (JIS). vol. 40(1), pp. 67–87. SAGE Publications Ltd, UK (2014)

    Google Scholar 

  25. Oudah, M., Shaalan, K.: Person name recognition using hybrid approach. In: NLDB 2013, LNCS, vol. 7934, pp. 237–248. Springer, Berlin (2013)

    Google Scholar 

  26. Ray, S.K., Singh, S., Joshi, B.P.: Question classification & answer validation—a semantic approach using WordNet and Wikipedia. Pattern Recogn. Lett. 31(13), 1935–1943 (2010)

    Article  Google Scholar 

  27. Cao, Y.G., Liua, F., Simpsonb, P., Antieaua, L., Bennett, A., Cimino, J.J., Ely, J., Yu, H.: AskHERMES: an online question answering system for complex clinical questions. J. Biomed. Inf. 44(2), pp. 277–288 (2011)

    Google Scholar 

  28. Zheng, Z.: AnswerBus question answering system. In: Proceedings of the Second International Conference on Human Language Technology Research, pp. 399–404 (2002)

    Google Scholar 

  29. Lin, J.: An exploration of the principles underlying redundancy-based factoid question answering. ACM Trans. Inf. Syst. 27(2), 1–55 (2007)

    Google Scholar 

  30. Larkey, L.S., Connell, M.E., Abduljaleel, N.: “Hindi CLIR in Thirty Days,” ACM Transactions on Asian Language Information Processing (TALIP), vol 2, Issue 2, pp. 130–142. ACM, New York, NY, USA, June 2003

    Google Scholar 

  31. Sekine, S., Grishman, R.: Hindi-English Cross-Lingual Question-Answering system. ACM Trans. Asian Lang. Inf. Process. (TALIP) 2(3), 181–192 (2003)

    Google Scholar 

  32. Shukla, P., Mukherjee, A., Raina, A.: Towards a language independent encoding of documents: a novel approach to multilingual question answering. In: Proceedings of the 1st International Workshop on Natural Language Understanding and Cognitive Science, NLUCS 2004, pp. 116–125, (2004)

    Google Scholar 

  33. Uchida, H.: UNL Beyond machine translation. In: International Symposium on Language in Cyberspace, Seoul, Korea Systems. ICEIS Press (2001)

    Google Scholar 

  34. Surve, M., Singh, S., Kagathara, S., Venkatasivaramasastry, K., Dubey, S., Rane, G., Saraswati, J., Badodekar, S., Iyer, A., Almeida, A., Nikam, R., Perez, C.G., Bhattacharyya, P.: AgroExplorer: a meaning based multilingual search engine. International Conference on Digital Libraries (2004)

    Google Scholar 

  35. CLIA Consortium: Cross lingual information access system for indian languages. In: Demo/Exhibition of the 3rd International Joint Conference on Natural Language Processing, Hyderabad, India, pp. 973–975 (2008)

    Google Scholar 

  36. Kumar, P., Kashyap, S., Mittal, A., Gupta, S.: A query answering system for e-learning Hindi documents. South Asian Language Review, vol. XIII, Nos 1&2, Jan-June, 2003. pp. 69–81 (2003)

    Google Scholar 

  37. Sahu, S., Vasnik, N., Roy, D.: Prashnottar: a Hindi question answering system. Int. J. Comput. Sci. Inf. Technol. (IJCSIT) 4(2) (2012)

    Google Scholar 

  38. Nanda, G., Dua, M., Singla, K.: A Hindi question answering system using machine learning approach. In: 2016 International Conference on Computational Techniques in Information and Communication Technologies (ICCTICT) (2016)

    Google Scholar 

  39. Cucerzan, S., Yarowsky, D.: Language independent named entity recognition combining morphological and contextual evidence. Proc. Jt. SIGDAT Conf. EMNLP VLC 1999, 90–99 (1999)

    Google Scholar 

  40. Li, W., McCallum, A.: Rapid development of Hindi named entity recognition using conditional random fields and feature induction (Short Paper). In: ACM Transactions on Computational Logic (2004)

    Google Scholar 

  41. Kumar, N., Pushpak, B.: Named Entity Recognition in Hindi using MEMM. In Technical Report, IIT Bombay, India (2006)

    Google Scholar 

  42. Saha, S.K., Chatterjee, S., Dandapat, S., Sarkar, S., Mitra, P.: A Hybrid Approach for Named Entity Recognition in Indian Languages. In: Proceedings of the IJCNLP-08 Workshop on NER for South and South East Asian Languages, Hyderabad, India, pp. 17–24, January 2008

    Google Scholar 

  43. Avinesh, P., Karthik, G.: Part of speech tagging and chunking using conditional random fields and transformation based learning. Proc IJCAI Workshop Shallow Parsing South Asian Lang. India 2007, 21–24 (2007)

    Google Scholar 

  44. Ray, P.R., Harish, V., Basu, A., Sarkar, S.: Part of speech tagging and local word grouping techniques for natural language parsing in Hindi. In: Proceedings of ICON (2003)

    Google Scholar 

  45. Singh, S., Gupta, K., Shrivastava, M., Bhattacharyya, P.: Morphological richness offsets resource demand-experiences in constructing a POS Tagger for Hindi. In: Proceedings of the COLING/ACL 2006 Main Conference Poster Sessions, Sydney, pp. 779–786, July 2006

    Google Scholar 

  46. Akshar, B., Chaitanya, V., Sangal, R.: NLP A Paninian Perspective. Prentice Hall of India, Delhi (1994)

    Google Scholar 

  47. Ramanathan, A., Rao, D.: A lightweight stemmer for Hindi. In: Proceedings of the 10th Conference of the European Chapter of the Association for Computational Linguistics (EACL), on Computational Linguistics for South Asian Languages (Budapest, Apr.) workshop (2003)

    Google Scholar 

  48. Reddy, S., Sharoff, S.: Cross language POS Taggers (and other Tools) for Indian languages: an experiment with Kannada using Telugu resources. In: Proceedings of the 5th Workshop on Cross Lingual Information Access (2011)

    Google Scholar 

  49. Brants, T.: Tnt: a statistical part-of-speech tagger. In: Proceedings of the Sixth Conference on Applied Natural Language Processing, ANLC’00, Stroudsburg, PA, USA, pp. 224–231. Association for Computational Linguistics (2000)

    Google Scholar 

  50. Ekbal, A., Haque, R., Das, A., Poka, V., Bandyopadhyay, S.: Language Independent named entity recognition in Indian languages. In: Proceedings of the IJCNLP-08 Workshop on NER for South and South East Asian Languages, Hyderabad, India, pp. 33–40, Jan 2008

    Google Scholar 

  51. Dandapat, S.: Part-of-Speech tagging and chunking with maximum entropy mode. In: Proceedings of SPSAL2007, IJCAI, India, pp. 29–32 (2007)

    Google Scholar 

  52. Chaware, S.M., Rao, S.: Ontology approach for cross language information retrieval. Int. J. Comput. Technol Appl. 2, 379–384 (2011)

    Google Scholar 

  53. Bhatt, B., Bhattacharyya, P.: Domain specific ontology extractor for Indian languages. In: Proceedings of 10th Workshop on Asian Language Resources, COLING, Mumbai, pp. 75–84 (2012)

    Google Scholar 

  54. Mathur, I., Darbari, H., Joshi, N.: Domain ontology development for communicable diseases. CS & IT-CSCP 3, 351–360 (2013)

    Google Scholar 

  55. Dwivedi, S.K., Kumar, A.: Development of University ontology for aSPOCMS. J. Emerg. Technol. Web Intell. 5, 213–221 (2013)

    Google Scholar 

  56. Miller, G.A.: WordNet: a Lexical database for English. Commun. ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  57. Segond, F., Schiller, A., Grefenstette, G., Chanod, J.-P.: An experiment in semantic tagging using hidden Markov model tagging. In: Proceedings of the Workshop in Automatic Information Extraction and Building of Lexical Semantic Resources, pp. 78–81 (1997)

    Google Scholar 

  58. G´omez-Adorno, H., Pinto, D., Darnes, V.A.: Question Answering System for Reading Comprehension Tests. Pattern Recognition Lecture Notes in Computer Science, vol. 7914, pp. 354–363 (2013)

    Google Scholar 

  59. Yue, J., Alan, C., Biermann, W.: The use of lexical semantics in information extraction. In: Proceedings of the Workshop in Automatic Information Extraction and Building of Lexical Semantic Resources, pp. 61–70 (1997)

    Google Scholar 

  60. Fellbaum, C.: WordNet(s). In: Brown, K. (ed.) Encyclopedia of Language and Linguistics, 2nd Edn. pp. 665–670. Oxford, Elsevier (2006)

    Google Scholar 

  61. Zhiguo, G., Chan, W., Leong, H.U.: Web query expansion by WordNet. Database Expert Syst. Appl. Lect. Notes Comput. Sci. 3588, 166–175 (2005)

    Article  Google Scholar 

  62. Attia, M., Toral, A., Tounsi, L., Monachini, M., van Genabith, J.: An automatically built named entity lexicon for Arabic. In: Proceedings of the International Conference on Language Resources and Evaluation (LREC 2010), Valletta, Malta (2010)

    Google Scholar 

  63. Li, X., Szpakowicz, S., Matwin, S.: A WordNet-based algorithm for word sense disambiguation. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, pp. 1368–1374 (1995)

    Google Scholar 

  64. Sharma, V.K., Mittal, N.: Exploiting Wikipedia API for Hindi-english Cross-language Information Retrieval. In: Proceedings of Twelfth International Multi-Conference on Information Processing-2016, 19-21 Aug 2016, Bangalore, India, pp. 434–440 (2016)

    Google Scholar 

  65. Barman, U., Lohar, P., Bhaskar, P., Bandyopadhyay, S.: Ad-hoc information retrieval focused on wikipedia based query expansion and entropy based ranking. In: The proceedings of the Forum for Information Retrieval Evaluation (FIRE)—2012. Dec 2012, ISI, Kolkata, India (2012)

    Google Scholar 

  66. Adel, T., Okba, T.: DBPedia based factoid question answering system. Int. J. Web Semant. Technol. 4(3), 23–38 (2013)

    Article  Google Scholar 

  67. Kilgarriff, A., Reddy, S., Pomikálek, J., Avinesh, P.V.S.: A Corpus Factory for many languages. In: Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10), 19–21 May 2010. Malta, Valletta (2010)

    Google Scholar 

  68. Habash, N., Rambow O., Roth R.: A toolkit for Arabic tokenization, diacritization, morphological, disambiguation, POS tagging, stemming and lemmatization. In: Proceedings of Second International Conference on Arabic Language Resources and Tools, pp. 102–109 (2009)

    Google Scholar 

  69. Palmer, M., Bhatt, R., Narasimhan, B., Rambow, O., Misra, D.S., Xia, F.: Hindi syntax: annotating dependency, lexical predicate-argument structure, and phrase structure. In: The Proceedings of the 7th International Conference on Natural Language Processing, ICON-2009, Hyderabad, India, 14–17 Dec 2009

    Google Scholar 

  70. Bilotti, M.W., Katz, B., Lin, J.: What works better for question answering: stemming or morphological query expansion? In: Proceedings of Information Retrieval for Question Answering Workshop, at SIGIR (2004)

    Google Scholar 

  71. Lopez, V., Victoria, U., Enrico, M., Michele, P.: AquaLog: An ontology-driven question answering system for organizational semantic intranets. J. Web Semant. Elsevier 5(2), 72–105 (2007)

    Article  Google Scholar 

  72. Derczynski, L., Field, C.V., Bøgh, K.S.: DKIE: open source information extraction for Danish. In: Proceedings of the meeting of the European chapter of the Association for Computation Linguistics (EACL), Gothenburg, Sweden (2014)

    Google Scholar 

  73. Maynard, D., Bontcheva, K.: Natural language processing. In: Lehmann, J., Voelker, J. (eds.) Perspectives of Ontology Learning. IOS Press (2014)

    Google Scholar 

  74. Sabou, M., Bontcheva, K., Derczynski, L., Scharl, A.: Corpus annotation through crowdsourcing: towards best practice guidelines. In: Proceedings of the Language Resources and Evaluation Conference (LREC) (2014)

    Google Scholar 

  75. Ng, J.-P., Kan M.-Y.: QANUS: An open source question-answering platform. http://wing.comp.nus.edu.sg/~junping/docs/qanus.pdf (2014). Accessed 1 May 2014

  76. Ageev, M., Lagun, D., Agichtein, E.: The answer is at your fingertips: improving passage retrieval for web question answering with search behavior data. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, pp. 1011–1021 (2013)

    Google Scholar 

  77. Geirsson, Ó.P.: IceQA: Developing an open source question-answering system. http://www.ru.is/~hrafn/students/IceQA.pdfm (2013)

  78. Gali, K., Surana, H., Vaidya, A., Shishtla, P., Sharma, D.M.: Aggregative machine learning and rule based heuristics for named entity recognition. In: Proceedings of the IJCNLP-08 Workshop on NER for South and South East Asian Languages, pp 25–32 (2008)

    Google Scholar 

  79. Bowden, M., Olteanu, M., Suriyentrakorn, P., Clark, J., Moldovan, D.: LCC’s PowerAnswer at QA@CLEF 2006. In Proceedings of CLEF 2006, pp. 310–317 (2006)

    Google Scholar 

  80. Katz, B., Borchardt, G., Felshin, S.: Natural language annotations for question answering. In: Proceedings of the 19th International FLAIRS Conference (FLAIRS 2006), Melbourne Beach, FL (2006)

    Google Scholar 

  81. Radev, D.R., Qi, H., Wu, H., Fan, W.: Evaluating web-based question answering systems. In: Proceedings of LREC, Las Palmas, Spain (2002)

    Google Scholar 

  82. Higashinaka, R., Isozaki, H.: Corpus-based question answering for why-questions. In: Proceedings of the Third International Joint Conference on Natural Language Processing (IJCNLP), Hyderabad, India, pp. 418–425 (2008)

    Google Scholar 

  83. Brill, E., Dumais, S., Banko, M.: An analysis of the AskMSR question answering system. In: Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing, Pennsylvania, USA, pp. 257–264, 6–7 July 2002

    Google Scholar 

  84. Soricut, R., Brill, E.: Automatic question answering using the Web: beyond the factoid. J. Inf. Retr.—Special Issue Web Inf. Retr. 9(2), 191–206 (2006)

    Google Scholar 

  85. Dror, G., Koren, Y., Maarek, Y., Szpektor, I.: I want to answer; who has a question?: Yahoo! answers recommender system. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1109–1117 (2011)

    Google Scholar 

  86. Adamic, L.A., Zhang, J., Bakshy, E., Ackerman, M.S.: Knowledge sharing and yahoo answers: everyone knows something. In: Proceedings of WWW ‘08, pp. 665–674 (2008)

    Google Scholar 

  87. Surdeanu, M., Massimiliano, C., Hugo, Z.: Learning to rank answers to non-factoid questions fromweb collections. Assoc. Comput. Linguist. 37(2), 351–383 (2011)

    Article  Google Scholar 

  88. Arai, K., Handayani, A.N.: Question answering system for an effective collaborative learning. Int. J. Adv. Comput. Sci. Appl. 3(1), 60–64 (2012)

    Google Scholar 

  89. Cairns, B.L., Nielsen, R.D., Masanz, J.J., Martin, J.H., Palmer, M.S., Ward, W.H., Savova, G.K.: The MiPACQ clinical question answering system. In: Proceedings of AMIA Annual Symposium, pp. 171–180 (2011)

    Google Scholar 

  90. Kongthon, A., Kongyoung, S., Haruechaiyasak, C., Palingoon, P.: A semantic based question answering system for Thailand tourism information. In: Proceedings of the KRAQ11 Workshop, Chiang Mai, Thailand, pp. 38–42 (2011)

    Google Scholar 

  91. Baeza-Yates, R., Rello, L.: How bad do you spell?: the lexical quality of social media. In: Proceedings of the Future of the Social Web, WS-11–03 of AAAI Workshops, AAAI (2011)

    Google Scholar 

  92. Raghavi, K.C., Chinnakotla, M., Shrivastava, M.: Answer ka type kya he? Learning to classify questions in code-mixed language. In: The Proceedings of the International World Wide Web Conference Committee (IW3C2), pp. 853–858 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Kumar Ray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ray, S.K., Ahmad, A., Shaalan, K. (2018). A Review of the State of the Art in Hindi Question Answering Systems. In: Shaalan, K., Hassanien, A., Tolba, F. (eds) Intelligent Natural Language Processing: Trends and Applications. Studies in Computational Intelligence, vol 740. Springer, Cham. https://doi.org/10.1007/978-3-319-67056-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67056-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67055-3

  • Online ISBN: 978-3-319-67056-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics