Antimicrobial Capacities of the Medicinal Halophyte Plants

  • Faten Medini
  • Riadh Ksouri
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 19)


Halophytes grow in many regions of the world where they are exposed and survive to harsh environmental conditions. As a consequence, these species developed adaptive responses including the synthesis of several bioactive molecules that made them plants of significant economic potential as well as a potential source of newly discovered medicine. Moreover, several salt marsh plants have traditionally been used for medical, nutritional, and even artisanal purposes. Currently, an increasing interest is granted to these species because of their high content in bioactive compounds (primary and secondary metabolites) such as polyunsaturated fatty acids, carotenoids, vitamins, sterols, essential oils (terpenes), polysaccharides, glycosides, and phenolic compounds. This chapter reviews available literature about the status of a wide variety of halophytic species traditionally used as medicinal virtue. It aims to highlight the importance of halophytes as a potential source of antimicrobial and antiviral agents and indicate their prospective utilization at industrial scale.


Halophytes Antiviral activity Antibacterial capacity Antifungal ability 


  1. Abdelly C, Barhoumi Z, Ghnaya T, Debbez A, Ben Hamed K, Ksouri R, Talbi O, Zribi F, Ouerghi Z, Smaoui A, Huchzernmeyer B, Grignon C (2006) Potential utilisation of halophytes for the rehabilitation and valorisation of salt-affected areas in Tunisia. In: Ozturk M, Waisel Y, Khan MA, Gork G (eds) Biosaline agriculture and salinity tolerance in Plants, Tome I, pp 161–170Google Scholar
  2. Akaike T, Noguchi Y, Ijiri S, Setoguch K, Suga M, Zeng Y, Dietzschold B, Maeda H (1996) Pathogenesis of influenza virus-induced pneumonia: involvement of both nitric oxide and oxygen radicals. Proc Natl Acad Sci USA 93:2448–2453CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bagla VP, McGaw LJ, Eloff JN (2012) The antiviral activity of six South African plants traditionally used against infections in ethnoveterinary medicine. Vet Microbiol 155:198–206CrossRefPubMedGoogle Scholar
  4. Bandaranayake WM (2002) Bioactivities, bioactive compounds and chemical of mangrove plants. Wet Ecol Man 10:421–422CrossRefGoogle Scholar
  5. Banerjee MB, Ravikumar S, Gnanadesigan M, Rajakumar B, Anand M (2012) Antiviral, antioxidant and toxicological evaluation of mangrove associate from South East coast of India. Asian Pac J Trop Biomed:S1775–S1779Google Scholar
  6. Bhuwan B, Mishra-Vinod K, Tiwari J (2011) Natural products: an evolving role in future drug discovery. Eur J Med Chem 46:4769–4807CrossRefGoogle Scholar
  7. Boulaaba M, Snoussi M, Saada M, Mkadmini K, Smaoui A, Abdelly C, Ksouri R (2014) Antimicrobial activities and phytochemical analysis of Tamarix gallica extracts. Ind Crops Prod 76:1114–1122Google Scholar
  8. Boulaabaa M, Snoussi M, Saadaa M, Mkadmini KH, Ab S, Abdelly CH, Ksouri R (2015) Antimicrobial activities and phytochemical analysis of Tamarix gallica extracts. Ind Crops Prod 76:1114–1122CrossRefGoogle Scholar
  9. Bourne KZ, Bourne N, Reising SF, Stanberry LR (1999) Plant products as topical microbicide candidates: assessment of in vitro and in vivo activity against herpes simplex virus type 2. Antivir Res 42:219–226CrossRefPubMedGoogle Scholar
  10. Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 94:223–253Google Scholar
  11. Camargo F, Cortezb DAG, Ueda-Nakamurac T, Nakamurac CV, Dias Filho BP (2008) Antiviral activity and mode of action of a peptide isolated from Sorghum bicolor. Phytomedicine 15(3):202–208CrossRefGoogle Scholar
  12. Chiang LC, Chiang W, Chang MY, Ng LT, Lin CC (2002) Antiviral activity of Plantago major extracts and related compounds in vitro. Antivir Res 55:53–62CrossRefPubMedGoogle Scholar
  13. Chiu NY, Chang KH (1992) The illustrated medicinal plants of Taiwan. SMC Publishing Inc., Taipei, TaiwanGoogle Scholar
  14. CLSI (NCCLS) (2003) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard 23. National Committee for Clinical Laboratory Standards, Wayne, PA, USAGoogle Scholar
  15. Eloff JN (1998) A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med 64:711–713CrossRefPubMedGoogle Scholar
  16. Essaidi I, Brahmi Z, Snoussi A, Ben Haj Koubaier A, Casabianca H, Abe N, El Omri A, Moncef Chaabouni M, Bouzouita N (2013) Phytochemical investigation of Tunisian Salicornia herbacea L., antioxidant, antimicrobial and cytochrome P450 (CYPs) inhibitory activities of its methanol extract. Food Control 32:125–133CrossRefGoogle Scholar
  17. Fabry W, Okemo PO, Ansorg R (1998) Antibacterial activity of East African medicinal plants. J Ethnopharmacol 60:79–84CrossRefPubMedGoogle Scholar
  18. Falleh H, Ksouri R, Chaieb K, Karray-Bouraoui N, Trabelsi N, Boulaaba M, Abdelly C (2008) Phenolic composition of Cynara cardunculus L. organs, and their biological activities. C R Biol 331:372–379Google Scholar
  19. Falleh H, Msilini N, Oueslati S, Ksouri R, Magne CH, Lachaal M (2013a) Diplotaxis harra and Diplotaxis simplex organs: assessment of phenolics and biological activities before and after fractionation. Ind Crops Prod 45:141–147CrossRefGoogle Scholar
  20. Falleh H, Oueslati S, Guyot S, Ben Dali A, Magné C, Abdelly C, Ksouri R (2011) LC/ESI-MS/MS characterisation of procyanidins and propelargonidins responsible for the strong antioxidant activity of the edible halophyte Mesembryanthemum edule L. Food Chem 127:1732–1738CrossRefGoogle Scholar
  21. Falleh H, Trabelsi N, Bonenfant-Magné G, Le Flochc G, Abdelly CH, Magnéb CH, Ksouri R (2013b) Polyphenol content and biological activities of Mesembryanthemum edule organs after fractionation. Ind Crops Prod 42:145–152CrossRefGoogle Scholar
  22. Gibbons S (2004) Anti-staphylococcal plant natural products. Natural Prod Rep 21:263–277CrossRefGoogle Scholar
  23. Govindasamy CH, Arulpriya M (2013) Antimicrobial activity of Acanthus ilicifolius: Skin infection pathogens. Asian Pac J Trop Dis 3(3):180–183CrossRefPubMedCentralGoogle Scholar
  24. Goyal MM, Rani KK (1989) Antibacterial activity of the natural products from the leaves of Thespesia populnea. Acta Cienc Indica Chem 15:117–124Google Scholar
  25. Hassan A, Rahman S, Deeba F, Mahmud S (2009) Antimicrobial activity of some plant extracts having hepatoprotective effects. J Med Plants Res 3(1):020–023Google Scholar
  26. Hostettmann K, Marston A, Wolfender JL (1995) In phytochemistry of plants used in traditional medicine. Clarendon Press, Oxford, pp 17–45Google Scholar
  27. Hsu WS, Chang SP, Lin LS, Li CHL, Richardson CH, Lin CH, Lin LT (2015) Limonium sinense and gallic acid suppress hepatitis C virus infection by blocking early viral entry. Antivir Res 118(2015):139–147CrossRefPubMedGoogle Scholar
  28. Jaleel CA, Ksouri R, Gopi P, Manivannan J, Ines H, Al-Juburi Z, Chang- Xing S, Hong-Bo PR (2009) Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol Plant 31:427–436CrossRefGoogle Scholar
  29. Jallali I, Zaouali Y, Missaoui I, Smeoui A, Abdelly CH, Ksouri R (2014) Variability of antioxidant and antibacterial effects of essential oils and acetonic extracts of two edible halophytes: Crithmumn maritimum L. and Inula crithmoïdes L. Food Chem 145(2014):1031–1038CrossRefPubMedGoogle Scholar
  30. Jones A, Panagos P, Barcelo S, Bouraoui F, Bosco C, Dewitte O, Gardi C, Erhard M, Hervas J, Heiderer R, Jef-fery S, Lukewille A, Marmo L, Montanarella L, Olazabal C, Petersen JE, Penizek V, Strassburger T, Toth G, Van Den Eeck-aut M, Van Liedekerke M, Verheigen F, Viestova E, Yigini Y (2012) The state of soil in Europe, Copenhagen, European Environment Agency. report 2012 02 soil.pdf
  31. Kandil FE, Ahmed KM, Hussieny HA, Soliman AM (2000) A new flavonoid from Limonium axillare. Archiv der pharmazie. J Pharm Med Chem 333:275–277Google Scholar
  32. Ksouri R, Falleh H, Megdiche W, Trabelsi N, Baya M, Chaieb K, Bakrouf A, Magné M, Abdelly CH (2009) Antioxidant and antimicrobial activities of the edible medicinal halophyte Tamarix gallica L. and related polyphenolic constituents. Food Chem Toxicol 47:2083–2091CrossRefPubMedGoogle Scholar
  33. Ksouri R, Ksouri WM, Jallali I, Debez A, Magné CH, Hiroko I, Abdelly CH (2012) Medicinal halophytes: potent source of health promoting biomolecules with medical, nutraceutical and food applications. Crit Rev Biotechnol:1–38Google Scholar
  34. Ksouri R, Megdiche W, Falleh H, Trabelsi N, Boulaaba M, Smaoui A, Abdelly C (2008) Influence of biological, environmental and technical factors on phenolic content and antioxidant activities of Tunisian halophytes. Compte Rendu Biol 331:865–873CrossRefGoogle Scholar
  35. Lahlou M (2004) Methods to study the phytochemistry and bioactivity of essential oils. Phytother Res 18:435–448CrossRefPubMedGoogle Scholar
  36. Lin LC, Chou CJ (2000) Flavonoids and phenolics from Limonium sinense. Planta Med 66:382–383CrossRefPubMedGoogle Scholar
  37. Lin LC, Kuo YC, Chou CJ (2000) Anti-herpes simplex virus type-1 flavonoids and a new flavanone from the root of Limonium sinense. Planta Med 66:333–336CrossRefPubMedGoogle Scholar
  38. Magwa ML, Gundidza M, Gweru N, Humphrey G (2006) Chemical composition and biological activities of essential oil from the leaves of Sesuvium portulacastrum. J Ethnopharmacol 103:85–89Google Scholar
  39. McCutcheon AR, Roberts TE, Gibbons E, Ellis SM, Babiuk LA, Hancock REW, Tower GHN (1995) Antiviral screening of British Colombian medicinal plants. J Ethnopharmacol 49:101–110CrossRefPubMedGoogle Scholar
  40. Medini F, Fellah H, Ksouri R, Abdelly CH (2014a) Total phenolic, flavonoid and tannin contents and antioxidant and antimicrobial activities of organic extracts of shoots of the plant Limonium delicatulum. J Taibah Univ Sci 8:216–224CrossRefGoogle Scholar
  41. Medini F, Ksouri R, Falleh H, Megdiche W, Trabelsi N, Abdelly CH (2011) Effects of physiological stage and solvent on polyphenol composition, antioxidant and antimicrobial activities of Limonium densiflorum. J Med Plants Res 5(31):6719–6730Google Scholar
  42. Medini F, Megdiche W, Mshvildadze V, Pichette A, Legault J, St-Gelais A, Ksouri R (2016) Antiviral-guided fractionation and isolation of phenolic compounds from Limonium densiflorum hydroalcoholic extract. Compte Rendu ChimieGoogle Scholar
  43. Medini M, Legault J, Pichette A, Abdelly CH, Ksouri R (2014b) Antiviral efficacy of Limonium densiflorum against HSV-1 and influenza viruses. S Afr J Bot 92:65–72CrossRefGoogle Scholar
  44. Megdiche-Ksouri W, Trabelsia N, Mkadmini KH, Bourgoua S, Noumi A, Snoussi M, Barbria R, Tebourbi O, Ksouri R (2015) Artemisia campestris phenolic compounds have antioxidant andantimicrobial activity. Ind Crops Prod 63:104–113CrossRefGoogle Scholar
  45. Menezes-Benavente L, Karam Teixeira F, Alvim Kamei CL, Margis- Pinheiro M (2004) Salt stress induces altered expression of genes encoding antioxidant enzymes in seedlings of a Brazilian indica rice (Oryza sativa L.). Plant Sci 166:323–331CrossRefGoogle Scholar
  46. Meot-Duros L, Le Floch G, Magn´e CH (2008) Radical scavenging, antioxidant and antimicrobial activities of halophytic species. J Ethnopharmacol 116:258–262Google Scholar
  47. Meot-Duros L, Cérantola S, Talarmin H, Le Meur C, Le Floch G, Magné C (2009) New antibacterial and cytotoxic activities of falcarindiol isolated in Crithmum maritimum L. leaf extract. Food Chem Toxicol 48(2):553–557Google Scholar
  48. Michel T, Destandau E, Le Floch G, Lucchesi ME, Elfakir C (2012) Antimicrobial, antioxidant and phytochemical investigations of sea buckthorn (Hippophaë rhamnoides L.) leaf, stem, root and seed. Food Chem 131:754–760Google Scholar
  49. Mohan K, Paramasivam R, Chandran P, Veerasami V, Gnanasekaran A, Anushka S, Murugesan M (2011) Inhibition of hepatitis B virus DNA polymerase and modulation of TH1 & TH2 cytokine secretion by three Indian medicinal plants and its correlation with antiviral properties. J Pharmacol Res 4(4):1044–1046Google Scholar
  50. Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70(3):461–477CrossRefPubMedGoogle Scholar
  51. Okuda T (2005) Systematics and health effects of chemically distinct tannins in medicinal plants. Phytochemistry 66:2012–2031CrossRefPubMedGoogle Scholar
  52. Padmakumar K, Ayyakkannu K (1997) Antiviral activity of marine plants. Indian J Virol 13:33–36Google Scholar
  53. Premanathan M, Kathiresan K, Nakashima H (1999) Mangrove halophytes: a source of antiviral substances. S Pac Study 19:1–2Google Scholar
  54. Ravikumar S, Inbanesan SJ, Suganthi P, Gnanadesigan M (2011) In vitro antiplasmodial activity of ethanolic extracts of mangrove pants from South East coast of India against chloroquine-sensitive Plasmodium falciparum. Parasitol Res 108:873–878CrossRefPubMedGoogle Scholar
  55. Rechter S, Konig T, Auerochs S, Thulke S, Walter H, Dornenburg H, Walter C, Marschall M (2006) Antiviral activity of Arthrospira-derived spirulan-like substances. Antivir Res 72:197e206 Google Scholar
  56. Rios JL, Recio MC (2005) Medicinal plants and antimicrobial activity. J Ethnopharmacol 100:80–84CrossRefPubMedGoogle Scholar
  57. Roizman B, Knipe DM, Whitley RJ (2007) Herpes simplex viruses. In: Fields virology, 5th edn. pp 2501–2601Google Scholar
  58. Saad M, Taher M, Susanti D, Qaralleh H, Binti NA, Rahim A (2011) Antimicrobial activity of mangrove plant (Lumnitzera littorea). Asian Pac J Trop Med:523–525Google Scholar
  59. Saada M, Falleh H, Jalleli I, Snoussi M, Ksouri R (2014) Phenolic profile, biological activities and fraction analysis of the medicinal halophyte Retama raetam. S Afr J Bot 94:114–121CrossRefGoogle Scholar
  60. Saenz MT, Tornos MP, Alvarez A, Fernandez MA, Garcia MD (2004) Antibacterial activity of essential oils of Pimenta racemosa var. terebinthina and Pimenta racemosa var. grisea. Short Report. Fitoterapia 75:599–602Google Scholar
  61. Saïdana D, Mahjoub MA, Boussaada O, Chriaa J, Chéraif I, Daamid M, Mighrib Z, Helal AN (2008). Chemical composition and antimicrobial activity of volatile compounds of Tamarix boveana (Tamaricaceae). Microbiol Res 163:445–455Google Scholar
  62. Sakagami Y, Murata H, Nakanishi T, Inatomi Y, Watabe K, Iinuma M, Tanaka T, Murata J, Lang FA (2001) Inhibitory effect of plant extracts on production of verotoxin by enterohemorrhagic Escherichia coli O157:H7. J Health Sci 47(5):473–477Google Scholar
  63. Samuelsen AB (2000) The traditional uses, chemical constituents and biological activities of Plantago major L. A review. J Ethnopharmacol 71:1–21CrossRefPubMedGoogle Scholar
  64. Subramanyam C, Rao KB, Rao CV, Rao BV (1992) Chemical examination of Suaeda monoica and Suaeda maritima. Acta Cienca Indica (C) 18:7–8Google Scholar
  65. Suhaj M (2006) Spice antioxidants isolation and their antiradical activity: a review. J Food Compos Anal 19:531–537CrossRefGoogle Scholar
  66. Thoroski J, Blank G, Biliaderis C (1989) Eugenol induced inhibition of extracellular enzyme production by Bacillus cereus. J Food Prot 52(6):399–403Google Scholar
  67. Trabelsi N, Megdiche W, Ksouri R, Falleh H, Oueslati S, Soumaya B, Hajlaoui H, Abdelly CH (2009) Solvent effects on phenolic contents and biological activities of the halophyte Limoniastrum monopetalum leaves. LWT-Food Sci Technol 43:632–639CrossRefGoogle Scholar
  68. Trabelsia T, Oueslati S, Henry-Vitrac C, Waffo-Téguob P, Medini F, Mérillon J, Abdelly CH, Ksouri R (2013) Phenolic contents and biological activities of Limoniastrum guyonianum fractions obtained by centrifugal partition. Ind Crops Prod 49:740–746CrossRefGoogle Scholar
  69. Wendakoon CN, Sakaguchi M (1995) Inhibition of amino acid decaboxylase activity of Enterobacter aerogenes by active components of spices. J Food Prot 58:280–283Google Scholar
  70. Yuh-Chi K, Lie-Chwen L, Wei-Jern T, Cheng-Jen C, Szu-Hao K, Yen-Hui H (2002) Samarangenin B from Limonium sinense suppresses herpes simplex virus type 1 replication in vero cells by regulation of viral macromolecular synthesis. Antimicrob Agents CH 46(9):2854–2864 Google Scholar
  71. Zhusupova G, Rachimov K, Shalakhmetova T, Abilov ZH (2002) Biodiversity, biomolecular aspects of biodiversity and innovative utilization. Edited by sener kluwer academic/Plennium publisherGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Laboratoire des Plantes Aromatiques et MédicinalesCenter of Biotechnology of Borj CedriaHammam-LifTunisia

Personalised recommendations