Antimicrobial Natural Products Against Campylobacter

  • Sonja Smole Možina
  • Anja Klančnik
  • Jasna Kovac
  • Barbara Jeršek
  • Franz Bucar
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 19)


Campylobacteriosis is the world’s leading bacterial foodborne illness and the most frequently reported zoonosis in humans. The present review aims to present an overview of the alternative strategies to limit Campylobacter contamination and to prevent Campylobacter infections using natural products from various sources. Additionally, natural products may improve the sensory characteristics of foods and extend their shelf life. The most effective intervention is inhibiting Campylobacter growth and thus reducing their prevalence and levels in vitro and in vivo along the food supply chain and on food products. Further, development of innovative growth and virulence control strategies using natural products in subinhibitory concentrations that do not pose selective pressure, may be beneficial. At such low concentrations, natural products can act as resistance modulators (e.g., efflux pump inhibitors) and thus enhance anti-Campylobacter activity of antibiotics. Low doses of natural compounds that are not cytotoxic can prevent adhesion of Campylobacter to abiotic surfaces, hence preventing biofilm formation, or to biotic surfaces, hence preventing attachment to animal or human epithelial cells.


Natural products Antimicrobial Resistance mechanism Efflux pump inhibitors Anti-adhesion Campylobacter 



Financial support by scientific technological cooperation projects SLO-A SI 03/2011 and SI 01/2016, funded by ARRS and OEAD, is gratefully acknowledged.


  1. Abreu AC, McBain AJ, Simoes M (2012) Plants as sources of new antimicrobials and resistance-modifying agents. Nat Prod Rep 29(9):1007–1021CrossRefPubMedGoogle Scholar
  2. Abreu AC, Borges A, Mergulhã F, Simões M (2014) Use of phenyl isothiocyanate for biofilm prevention and control. Int Biodeterior Biodegradation 86:34–41CrossRefGoogle Scholar
  3. Aparna V, Dineshkumar K, Mohanalakshmi N, Velmurugan D, Hopper W (2014) Identification of natural compound inhibitors for multidrug efflux pumps of Escherichia coli and Pseudomonas aeruginosa using in silico high-throughput virtual screening and in vitro validation. PLoS ONE 9(7):e101840CrossRefPubMedCentralPubMedGoogle Scholar
  4. Arsi K, Donoghue AM, Venkitanarayanan K, Kollanoor-Johny A, Fanatico AC, Blore PJ, Donoghue DJ (2014) The efficacy of the natural plant extracts, thymol, and carvacrol against Campylobacter colonization in broiler chickens. J Food Saf 34(4):321–325CrossRefGoogle Scholar
  5. Backert S, Hofreuter D (2013) Molecular methods to investigate adhesion, transmigration, invasion and intracellular survival of the foodborne pathogen Campylobacter jejuni. J Microbiol Methods 95:8–23CrossRefPubMedGoogle Scholar
  6. Baffoni L, Gaggìa F, Di Gioia D, Santini C, Mogna L, Biavati B (2012) A Bifidobacterium-based synbiotic product to reduce the transmission of C. jejuni along the poultry food chain. Int J Food Microbiol 57:156–161CrossRefGoogle Scholar
  7. Baquero F, Alvarez-Ortega C, Martinez J (2009) Ecology and evolution of antibiotic resistance. Environ Microbiol Rep 1(6):469–476CrossRefPubMedGoogle Scholar
  8. Bensch K, Tiralongo J, Schmidt K, Matthias A, Bone KM, Lehmann R et al (2011) Investigations into the anti-adhesive activity of herbal extracts against Campylobacter jejuni. Phytother Res 25:1125–1132CrossRefPubMedGoogle Scholar
  9. Bezek K, Kurinčič M, Knauder E, Klančnik A, Raspor P, Bucar F, Smole Možina S (2016) Attenuation of adhesion, biofilm formation and quorum sensing of Campylobacter jejuni by Euodia ruticarpa. Phytother Res 27.
  10. Blanchard C, Barnett P, Perlmutter J, Dunman PM (2014) Identification of Acinetobacter baumannii serum-associated antibiotic efflux pump inhibitors. Antimicrob Agents Chemother 58:6360–6370CrossRefPubMedCentralPubMedGoogle Scholar
  11. Borges A, Abreu AC, Malheiro J, Saavedra MJ, Simões M (2013) Biofilm prevention and control by dietary phytochemicals. Microbial pathogens and strategies for combating them: science, technology and education (A. Méndez-Vilas, Ed.)Google Scholar
  12. Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods-a review. Int J Food Microbiol 94:223–253CrossRefPubMedGoogle Scholar
  13. Campoccia D, Montanaro L, Arciola CR (2013) A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 34(34):8533–8554Google Scholar
  14. Canning C, Sun S, Ji X, Gupta S, Zhou K(2013) Antibacterial and cytotoxic activity of isoprenylated coumarin mammea A/AA isolated from Mammea africana. J Ethnopharmacol 147:259–262Google Scholar
  15. Cars O, Hedin A, Heddini A (2011) The global need for effective antibiotics—Moving towards concerted action. Drug Resist Updat 14:68–69CrossRefPubMedGoogle Scholar
  16. Davidson P, Cekmer Bozkurt, Monu EA, Techathuvanan C (2015) The use of natural antimicrobials in food: an overview. In: Taylor TM (ed) Handbook of natural antimicrobials for food safety and quality. Woodhead Publishing, Cambridge UK, pp 1–29Google Scholar
  17. Djenane D, Yanguela J, Roncales P (2014) A review and future potential approach for Campylobacter control in retail poultry meats. Afr J Microbiol Res 8(53):4041–4052Google Scholar
  18. Duarte A, Alves AC, Ferreira S, Silva F, Domingues FC (2015) Resveratrol inclusion complexes: Antibacterial and anti-biofilm activity against Campylobacter spp. and Arcobacter butzleri. Food Res Int 77:244–250CrossRefGoogle Scholar
  19. Duarte A, Luís A, Oleastro M, Domingues FC (2016) Antioxidant properties of coriander essential oil and linalool and their potential to control Campylobacter spp. Food Control 61:115–122CrossRefGoogle Scholar
  20. Dufour V, Alazzam B, Ermel G et al (2012) Antimicrobial activities of isothiocyanates against Campylobacter jejuni isolates. Front Cell Infect Microbiol 2:53CrossRefPubMedCentralPubMedGoogle Scholar
  21. Dunne WM (2002) Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 15(2):155–166CrossRefPubMedCentralPubMedGoogle Scholar
  22. EFSA (2011) Sientific Opinion on Campylobacter in broiler meat production: control options and performance objectives and/or targets at different stages of the food chain. EFSA J 4:2105Google Scholar
  23. EFSA (2012) The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2010. EFSA J 10:2598CrossRefGoogle Scholar
  24. EFSA (2013) The European Union report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2011. EFSA J 11:3129CrossRefGoogle Scholar
  25. Engels C, Schieber A, Ganzle MG (2011) Inhibitory spectra and modes of antimicrobial action of gallotannins from mango kernels (Mangifera indica L.). Appl Environ Microbiol 77:2215–2223Google Scholar
  26. Epps SV, Petrujkić BT, Sedej I, Krueger NA, Harvey RB, Beier RC, Stanton TB, Phillips TD, Anderson RC, Nisbet DJ (2015) Comparison of anti-Campylobacter activity of free thymol and thymol-β-D-glucopyranoside in absence or presence of β-glycoside-hydrolysing gut bacteria. Food Chem 15(173):92–98CrossRefGoogle Scholar
  27. FDA Orange Book (2015) Search for active ingredients: clavulanate.
  28. Fisher K, Phillips CA (2006) The effect of lemon, orange and bergamot essential oils and their components on the survival of Campylobacter jejuni, Escherichia coli O157, Listeria monocytogenes, Bacillus cereus and Staphylococcus aureus in vitro and in food systems. J Appl Microbiol 101:1232–1240CrossRefPubMedGoogle Scholar
  29. Gañan M, Martínez-Rodríguez AJ, Carrascosa AV (2009) Antimicrobial activity of phenolic compounds of wine against Campylobacter jejuni. Food Control 20:739–742CrossRefGoogle Scholar
  30. Garrett TR, Bhakoo M, Zhang Z (2008) Bacterial adhesion and biofilms on surfaces. Progress Nat Sci 18:1049–1056CrossRefGoogle Scholar
  31. Garvey MI, Rahman MM, Gibbons S, Piddock LJ (2011) Medicinal plant extracts with efflux inhibitory activity against Gram-negative bacteria. Int J Antimicrob Agents 37(2):145–151CrossRefPubMedGoogle Scholar
  32. Giménez-Bastida JA, Truchado P, Larrosa M, Espín JC, Tomás-Barberán FA, Allende A (2012) Urolithins, ellagitannin metabolites produced by colon microbiota, inhibit quorum sensing in Yersinia enterocolitica: Phenotypic response and associated molecular changes. Food Chem 132:1465–1474CrossRefPubMedGoogle Scholar
  33. Grilli E, Vitari F, Domeneghini C, Palmonari A, Tosi G, Fantinati P, Massi P, Piva A (2013) Development of a feed additive to reduce caecal Campylobacter jejuni in broilers at slaughter age: from in vitro to in vivo, a proof of concept. J Appl Microbiol 114(2):308–317CrossRefPubMedGoogle Scholar
  34. Gröblacher B, Kunert O, Bucar F (2012a) Compounds of Alpinia katsumadai as potential efflux inhibitors in Mycobacterium smegmatis. Bioorg Med Chem 20(8):2701–2706CrossRefPubMedGoogle Scholar
  35. Gröblacher B, Maier V, Kunert O, Bucar F (2012b) Putative mycobacterial efflux inhibitors from the seeds of Aframomum melegueta. J Nat Prod 75(7):1393–1399CrossRefPubMedGoogle Scholar
  36. Halberg Larsen M, Dalmasso M, Ingmer H, Langsrud S, Malakauskas M, Mader A, Møretrø T, Smole Možina S, Rychli K, Wagner M, Wallace RJ, Zentek J, Jordan K (2014) Persistence of foodborne pathogens and their control in primary and secondary food production chains. Food Control 44:92–109CrossRefGoogle Scholar
  37. Harvey J, Keenan KP, Gilmour A (2007) Assessing biofilm formation by Listeria monocytogenes strains. Food Microbiol 24:380–392CrossRefPubMedGoogle Scholar
  38. Hirshfield IN, Terzulli S, O’Byrne C (2003) Weak organic acids: a panoply of effects on bacteria. Sci Prog 86(4):245–269CrossRefPubMedGoogle Scholar
  39. Hoffman LR, D’Argenio DA, MacCoss MJ, Zhang Z, Jones RA, Miller SI (2005) Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436:1171–1175CrossRefPubMedGoogle Scholar
  40. Humphrey T, O’Brien S, Madsen M (2007) Campylobacters as zoonotic pathogens: A food production perspective. Int J Food Microbiol 117:237–257CrossRefPubMedGoogle Scholar
  41. Jeon B, Wang Y, Hao H, Barton YW, Zhang Q (2011) Contribution of CmeG to antibiotic and oxidative stress resistance in Campylobacter jejuni. J Antimicrob Chemother 66(1):79–85CrossRefPubMedGoogle Scholar
  42. Joshua GWP et al (2006) Biofilm formation in Campylobacter jejuni. Microbiology 152:387–396CrossRefPubMedGoogle Scholar
  43. Katalinić V, Smole Možina S, Generalić Mekić I, Skorza D, Ljubenkov I Klančnik A (2013) Phenolic profile, antioxidant capacity, and antimicrobial activity of leaf extracts from six Vitis vinifera L. varieties. Int J Food Propert 16:45–60Google Scholar
  44. Klančnik A, Guzej B, Hadolin Kolar M, Abramovič H, Smole Možina S (2009) In vitro antimicrobial and antioxidant activity of commercial rosemary extract formulations. J Food Prot 72:1744–1752CrossRefPubMedGoogle Scholar
  45. Klančnik A, Piskernik S, Jeršek B, Smole Možina S (2010) Evaluation of diffusion and dilution methods to determine the antibacterial activity of plant extracts. J Microbiol Methods 81(2):121–126CrossRefPubMedGoogle Scholar
  46. Klančnik A, Gröblacher B, Kovač J, Bucar F, Smole Možina S (2012a) Anti-Campylobacter and resistance-modifying activity of Alpinia katsumadai seed extracts. J Appl Microbiol 113(5):1249–1262CrossRefPubMedGoogle Scholar
  47. Klančnik A, Smole Možina S, Zhang Q (2012b) Anti-Campylobacter activities and resistance mechanisms of natural phenolic compounds in Campylobacter. PLoS ONE 7(12):e51800CrossRefPubMedCentralPubMedGoogle Scholar
  48. Klančnik A, Piskernik S, Bucar F, Vučković D, Smole Možina S, Jeršek B (2014) Reduction of microbiological risk in minced meat by a combination of natural antimicrobials. J Sci Food Agric 94:2758–2765CrossRefPubMedGoogle Scholar
  49. Kovač J, Gavarić N, Bucar F, Smole Možina S (2014) Antimicrobial and resistance modulatory activity of Alpinia katsumadai seed phenolic extract, essential oil and post-distillation extract. Food Technol Biotechnol 52(2):248–254Google Scholar
  50. Kovač J, Šimunović K, Wu Z, Klančnik A, Bucar F, Zhang Q, Smole Možina S (2015) Antibiotic resistance modulation and modes of action of (-)-α-pinene in Campylobacter jejuni. PLoS ONE 10(4):e0122871CrossRefPubMedCentralPubMedGoogle Scholar
  51. Kurekci C, Padmanabha J, Bishop-Hurley SL, Hassan E, Al Jassim RAM, McSweeney CS (2013) Antimicrobial activity of essential oils and five terpenoid compounds against Campylobacter jejuni in pure and mixed culture experiments. Int J Food Microbiol 166:450–457CrossRefPubMedGoogle Scholar
  52. Kurinčič M, Klančnik A, Smole Možina S (2012a) Epigallocatechin gallate as a modulator of Campylobacter resistance to macrolide antibiotics. Int J Antimicrob Agents 40(5):467–471CrossRefPubMedGoogle Scholar
  53. Kurinčič M, Klančnik A, Smole Možina S (2012b) Effects of efflux pump inhibitors on erythromycin, ciprofloxacin, and tetracycline resistance in Campylobacter spp. isolates. Microb Drug Resist 18(5):492–501CrossRefPubMedGoogle Scholar
  54. Kurinčič M, Jeršek B, Klančnik A, Smole Možina S, Fink R, Dražić G, Raspor P, Bohinc K (2016) Effects of natural antimicrobials on bacterial cell hydrophobicity, adhesion, and zeta potential. Arh Hig Rada Toksikol 67:39–45PubMedGoogle Scholar
  55. Lamers RP, Cavallari JF, Burrows LL (2013) The efflux inhibitor phenylalanine-arginine beta-naphthylamide (PAβN) permeabilizes the outer membrane of Gram-negative bacteria. PLoS ONE 8(3):e60666CrossRefPubMedCentralPubMedGoogle Scholar
  56. Lechner D, Gibbons S, Bucar F (2008) Plant phenolic compounds as ethidium bromide efflux inhibitors in Mycobacterium smegmatis. J Antimicrob Chemother 62(2):345–348CrossRefPubMedGoogle Scholar
  57. Lemos M, Borges A, Teodosio J, Araujo P, Mergulhao F, Melo L et al (2014) The effects of ferulic and salicylic acids on Bacillus cereus and Pseudomonas fluorescens single- and dual-species biofilms. Int Biodeterior Biodegrad 86:42–51CrossRefGoogle Scholar
  58. Liakos I, Grumezescu AM, Holban AM (2014) Magnetite manostructures as novel strategies for anti-infectious therapy. Molecules 19:12710–12726CrossRefPubMedGoogle Scholar
  59. Lin J, Michel LO, Zhang Q (2002) CmeABC functions as a multidrug efflux system in Campylobacter jejuni. Antimicrob Agents Chemother 46(7):2124–2131CrossRefPubMedCentralPubMedGoogle Scholar
  60. Lucera A, Costa C, Conteand A, DelNobile MA (2012) Food applications of natural antimicrobial compounds. Front Microbiol 3:1–13CrossRefGoogle Scholar
  61. Madikizela B, Aderogba MA, Van Staden J (2013) Isolation and characterization of antimicrobial constituents of Searsia chirindensis L. (Anacardiaceae) leaf extracts. J Ethnopharmacol 150:609–613CrossRefPubMedGoogle Scholar
  62. Matsumoto Y, Hayama K, Sakakihara S, Nishino K, Noji H, Iino R et al (2011) Evaluation of multidrug efflux pump inhibitors by a new method using microfluidic channels. PLoS ONE 6(4):e18547CrossRefPubMedCentralPubMedGoogle Scholar
  63. Mild RM, Joens LA, Friedman M, Olsen CW, McHugh TH, Law B, Ravishankar S (2011) Antimicrobial edible apple films inactivate antibiotic resistant and susceptible Campylobacter jejuni strains on chicken breast. J Food Sci 76(3):163–168CrossRefGoogle Scholar
  64. Neu HC, Fu KP (1978) Clavulanic acid, a novel inhibitor of beta-lactamases. Antimicrob Agents Chemother 14(5):650–655CrossRefPubMedCentralPubMedGoogle Scholar
  65. Nguyen VT, Turner MS, Dykes GA (2010) Effect of temperature and contact time on Campylobacter jejuni attachment to, and probability of detachment from stainless steel. J Food Protect 73:832–838CrossRefGoogle Scholar
  66. Nyati KK, Nyati R (2013) Role of Campylobacter jejuni infection in the pathogenesis of Guillain-Barré Syndrome: An update. BioMed Res Int ID 852195:1–13Google Scholar
  67. Ó Cróinín T, Backert S (2012) Host epithelial cell invasion by Campylobacter jejuni: trigger or zipper mechanism? Front Cell Infect Microbiol 2:25Google Scholar
  68. Otshudi AL, Apers S, Pieters L, Claeys M, Pannecouque C, De Clercq E, Van Zeebroeck A, Lauwers S, Frédérich M, Foriers A (2005) Biologically active bisbenzylisoquinoline alkaloids from the root bark of Epinetrum villosum. J Ethnopharmacol 102:89–94CrossRefPubMedGoogle Scholar
  69. Paradkar A (2013) Clavulanic acid production by Streptomyces clavuligerus: Biogenesis, regulation and strain improvement. J Antibiot 66(7):411–420CrossRefPubMedGoogle Scholar
  70. Piskernik S, Klančnik A, Riedel CT, Brøndsted L, Možina SS (2011) Reduction of Campylobacter jejuni by natural antimicrobials in chicken meat-related conditions. Food Control 22(5):718–724Google Scholar
  71. Prasch S, Bucar F (2015) Plant derived inhibitors of bacterial efflux pumps: an update. Phytochem Rev 14:961–974Google Scholar
  72. Rattanachaikunsopon P, Phumkhachorn P (2008) Diallyl sulfide content and antimicrobial activity against food-borne pathogenic bacteria of chives (Allium schoenoprasum). Biosci Biotechnol Biochem 72:2987–2991CrossRefPubMedGoogle Scholar
  73. Rattanachaikunsopon P, Phumkhachorn P (2010) Potential of coriander (Coriandrum sativum) oil as a natural antimicrobial compound in controlling Campylobacter jejuni in eaw meat. Biosci Biotehnol Biochem 74(1):31–35CrossRefGoogle Scholar
  74. Reeser RJ, Medler RT, Billington SJ, Jost BH, Joens LA (2007) Characterization of Campylobacter jejuni biofilms under defined growth conditions. Appl Environ Microbiol 73:1908–1913CrossRefPubMedCentralPubMedGoogle Scholar
  75. Reisner K, Krogfelt KA, Klein BM, Zechner EL, Molin S (2006) In vitro biofilm formation of commensal and pathogenic Escherichia coli strains: impact of environmental and genetic factors. J Bacteriol 188:3572–3581CrossRefPubMedCentralPubMedGoogle Scholar
  76. Reuter M, Mallett A, Pearson BM, van Vliet AHM (2010) Biofilm formation by Campylobacter jejuni is increased under aerobic conditions. Appl Environ Microbiol 76:2122–2128CrossRefPubMedCentralPubMedGoogle Scholar
  77. Robyn J, Rasschaert G, Hermans D, Pasmans F, Heyndrickx M (2013) In vivo broiler experiments to assess anti-Campylobacter jejuni activity of a live Enterococcus faecalis strain. Poultry Sci 92:265–271CrossRefGoogle Scholar
  78. Rode TM, Langsrud S, Holck A. Møretrø T (2007) Different patterns of biofilm formation in Staphylococcus aureus under foodrelated stress conditions. Int J Food Microbiol 116:372–383Google Scholar
  79. Rogers TJ, Paton JC (2009) Therapeutic strategies for Shiga toxin-producing Escherichia coli infections. Expert Rev Anti-Infect Ther 6:683–686CrossRefGoogle Scholar
  80. Rossi PG, Bao L, Luciani A, Panighi J, Desjobert JM, Costa J, Casanova J, Bolla JM, Berti L (2007) (E)-methylisoeugenol and elemicin: antibacterial components of Daucus carota L. essential oil against Campylobacter jejuni. J Agric Food Chem 55:7332–7336CrossRefPubMedGoogle Scholar
  81. Sahin O, Kassem II, Shen Z, Lin J, Rajashekara G, Zhang Q (2015) Avian Dis 59(2):185–200Google Scholar
  82. Sandasi M, Leonard CM, Viljoen AM (2010) The in vitro antibiofilm activity of selected culinary herbs and medicinal plants against Listeria monocytogenes: anti-biofilm activity. Lett Appl Microbiol 50:30–35CrossRefPubMedGoogle Scholar
  83. Shiu WK, Malkinson JP, Rahman MM, Curry J, Stapleton P, Gunaratnam M et al (2013) A new plant-derived antibacterial is an inhibitor of efflux pumps in Staphylococcus aureus. Int J Antimicrob Agents 42(6):513–518CrossRefPubMedGoogle Scholar
  84. Silva F, Nerín C, Domingues FC (2015) Stilbene phytoallexins inclusion complexes: A natural-based strategy to control foodborne pathogen Campylobacter. Food Control 54:66–73CrossRefGoogle Scholar
  85. Simões M, Simões LC, Vieira MJ (2010) A review of current emergent biofilm control strategies. LWT- Food Sci Technol 43:573–583CrossRefGoogle Scholar
  86. Smole Možina S, Kurinčič M, Klančnik A, Mavri A (2011) Campylobacter and its multi-resistance in the food chain. Trends Food Sci Technol 22:91–98CrossRefGoogle Scholar
  87. Soni KA, Balasubramanian AK, Beskok A, Pillai SD (2008) Zeta potential of selected bacteria in drinking water when dead, starved, or exposed to minimal and rich culture media. Curr Microbiol 56:93–97CrossRefPubMedGoogle Scholar
  88. Soni KA, Oladunjoye A, Nannapaneni R, Schilling MW, Silva JL, Mikel B, Bailey RH (2013) Inhibition and inactivation of salmonella typhimurium biofilms from polystyrene and stainless steel surfaces by essential oils and phenolic constituent carvacrol. J Food Prot 76(2):205–212Google Scholar
  89. Sulaeman S, Le Bihan G, Rossero A, Federighi M, De´ O Tresse E (2010) Comparison between the biofilm initiation of Campylobacter jejuni and Campylobacter coli strains to an inert surface using BioFilm Ring Test. J Appl Microbiol 108:1303–1312Google Scholar
  90. Sultanbawa Y (2011) Plant antimicrobials in food applications: Minireview. In: Science against microbial pathogens: communicating current research and technological advances. Mendez-Vilas A. (Ed.), Formatex, 1084–1093Google Scholar
  91. Szymanski CM, Gaynor EC (2012) How a sugary bug gets through the day. Recent developments in understanding fundamental processes impacting Campylobacter jejuni pathogenesis. Gut Microbes 3(2):135–144Google Scholar
  92. Šikić Pogačar M, Klančnik A, Bucar F, Smole Langerholc T, Možina S (2016) Anti-adhesion activity of thyme (Thymus vulgaris L.) extract, thyme postdistillation waste, and olive (Olea europea L.) leaf extract against Campylobacter jejuni on polystyrene and intestine epithelial cells. J Sci Food Agric 96(8):2723–2730CrossRefPubMedGoogle Scholar
  93. Šikić Pogačar M, Rubeša Mihaljević R, Klančnik A, Brumini G, Abram M, Smole Možina S (2009) Survival of stress exposed Campylobacter jejuni in the murine macrophage J774 cell line. Int J Food Microbiol 129:68–73CrossRefPubMedGoogle Scholar
  94. Šikić Pogačar M, Klančnik A, Smole Možina S, Cencič A (2010) Attachment, invasion, and translocation of Campylobacter jejuni in pig small-intestinal epithelial cells. Foodborne Pathog Dis 7:589–595Google Scholar
  95. Tegos G, Stermitz FR, Lomovskaya O, Lewis K (2002) Multidrug pump inhibitors uncover remarkable activity of plant antimicrobials. Antimicrob Agents Chemother 46(10):3133–3141CrossRefPubMedCentralPubMedGoogle Scholar
  96. Teh AHT, Lee SM, Dykes GA (2014) Does Campylobacter jejuni form biofilms in food-related environments? Appl Environ Microbiol 80:5154–5160CrossRefPubMedCentralPubMedGoogle Scholar
  97. Vargiu AV, Ruggerone P, Opperman TJ, Nguyen ST, Nikaido H (2014) Molecular mechanism of MBX2319 inhibition of Escherichia coli AcrB multidrug efflux pump and comparison with other inhibitors. Antimicrob Agents Chemother 58(10):6224–6234CrossRefPubMedCentralPubMedGoogle Scholar
  98. Whalen KE, Poulson-Ellestad KL, Deering RW, Rowley DC, Mincer TJ (2015) Enhancement of antibiotic activity against multidrug-resistant bacteria by the efflux pump inhibitor 3, 4-dibromopyrrole-2, 5-dione isolated from a Pseudoalteromonas sp. J Nat Prod 78(3):402–412CrossRefPubMedGoogle Scholar
  99. Zakariene G, Rokaityte A, Ramonaite S, Novoslavskij A, Mulkyte K, Zaborskiene G, Malakauskas M (2015) The antimicrobial effect of spice-based marinades against Campylobacter jejuni on contaminated fresh broiler wings. J Food Sci 80(3):627–634CrossRefGoogle Scholar
  100. Zhou J, Joubran C, Miller-Vedam L, Isabella V, Nayar A, Tentarelli S, Miller A (2015) Thinking outside the “Bug”—a unique assay to measure intracellular drug penetration in Gram-negative bacteria. Analy Chem 87(7):3579–3584CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Sonja Smole Možina
    • 1
  • Anja Klančnik
    • 1
  • Jasna Kovac
    • 1
    • 2
  • Barbara Jeršek
    • 1
  • Franz Bucar
    • 3
  1. 1.Department of Food Science and Technology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Department of Food ScienceThe Pennsylvania State UniversityUniversity ParkUSA
  3. 3.Department of PharmacognosyInstitute of Pharmaceutical Sciences, University of GrazGrazAustria

Personalised recommendations