Skip to main content

Supercomputer Modeling of Generation of Electromagnetic Radiation by Beam–Plasma Interaction

  • Conference paper
  • First Online:
Parallel Computational Technologies (PCT 2017)

Abstract

We construct in this article a two-dimensional particle-in- cell (PIC) numerical model of electron beam - plasma interaction based on the kinetic description of both ion and electron components with a continuously injected electron beam, and develop the corresponding parallel code. In this model, an electron beam, entering the plasma along magnetic field lines through one boundary and leaving it through the other, provides a continuous pumping of plasma oscillations. Such a problem statement requires that the model be constructed in a sufficiently long plasma region, where the time is long enough for the beam to be captured by the exciting wave field. The parallel algorithm was successfully applied to the solution of resource-intensive problem by efficiently using large numbers of computational cores.

The computational experiments were supported by the Russian Science Foundation, project no. 16-11-10028. The development of numerical algorithms was supported by the Russian Foundation for Basic Research, project no. 16-31-00304, 16-31-00301.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berendeev, E.A., Efimova, A.A.: Effective parallel calculations realization for modeling big problems of the plasma physics by the PIC-method. Vestnik UGATU 17(2(55)), 112–116 (2013)

    Google Scholar 

  2. Efimova, A.A., Berendeev, E.A., Dudnikova, G.I., Vshivkov, V.A.: Numerical simulation of nonlinear processes in a beam-plasma system. In: AIP Conference Proceedings, vol. 1684, p. 100001 (2015)

    Google Scholar 

  3. Burdakov, A.V., Avrorov, A.P., Arzhannikov, A.V., Astrelin, V.T., et al.: Development of extended heating pulse operation mode at GOL-3. Fusion Sci. Technol. 63(1T), 29–34 (2013)

    Article  Google Scholar 

  4. Engquist, B., Majda, A.: Absorbing boundary conditions for the numerical simulation of waves. Math. Comp. 31(139), 629–651 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  5. Mur, G.: Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations. IEEE Trans. Electromagnet. Compatib. 23(4), 377–382 (1981)

    Article  Google Scholar 

  6. Yee, K.S.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antenn. Propagat. AP–14(3), 302–307 (1966)

    MATH  Google Scholar 

  7. Birdsall, C.K., Langdon, A.B.: Plasma Physics via Computer Simulation. Institute of Physics Publishing, Bristol (1991)

    Book  Google Scholar 

  8. Berezin, Y.A., Vshivkov, V.A.: Particles Method in the Dynamics of a Rarefied Plasma. Nauka, Novosibirsk (1980)

    Google Scholar 

  9. Hockney, R.W., Eastwood, J.W.: Computer Simulation Using Particles. CRC Press, Boca Raton (1988)

    Book  MATH  Google Scholar 

  10. Boris, J.P.: Relativistic plasma simulation - optimization of a hybrid code. In: Fourth Conference on Numerical Simulation of Plasmas, Washington, pp. 3–67 (1970)

    Google Scholar 

  11. Langdon, A.B., Lasinski, B.F.: Electromagnetic and relativistic plasma simulation models. Meth. Comput. Phys. 16, 327–366 (1976)

    Google Scholar 

  12. Villasenor, J., Buneman, O.: Rigorous charge conservation for local electromagnetic field solver. Comput. Phys. 69, 306–316 (1992)

    Article  Google Scholar 

  13. Berendeev, E., Dudnikova, G., Efimova, A., Vshivkov, V.: Computer simulation of plasma dynamics in open plasma trap. In: Dimov, I., Faragó, I., Vulkov, L. (eds.) NAA 2016. LNCS, vol. 10187, pp. 227–234. Springer, Cham (2017). doi:10.1007/978-3-319-57099-0_23

    Chapter  Google Scholar 

  14. Berendeev, E.A., Dudnikova, G.I., Efimova, A.A., Ivanov, A.V., Vshivkov, V.A.: Computer simulation of cylindrical plasma target trap with inverse magnetic mirrors. In: AIP Conference Proceedings, vol. 1771, p. 030009 (2016)

    Google Scholar 

  15. Boronina, M.A., Vshivkov, V.A.: Parallel 3-D particle-in-cell modelling of charged ultrarelativistic beam dynamics. J. Plasma Phys. 81(6) (2015)

    Google Scholar 

  16. Andrianov, A.N., Efimkin, K.N.: Approach to parallel implementation of the particles in cell method. Preprints Keldysh Institute of Applied Mathematics, No. 9 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Efimova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Berendeev, E., Boronina, M., Dudnikova, G., Efimova, A., Vshivkov, V. (2017). Supercomputer Modeling of Generation of Electromagnetic Radiation by Beam–Plasma Interaction. In: Sokolinsky, L., Zymbler, M. (eds) Parallel Computational Technologies. PCT 2017. Communications in Computer and Information Science, vol 753. Springer, Cham. https://doi.org/10.1007/978-3-319-67035-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67035-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67034-8

  • Online ISBN: 978-3-319-67035-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics