Skip to main content

The Ball in Flight Model

  • Chapter
  • First Online:
  • 670 Accesses

Abstract

This chapter is independent of the rest of this book. It derives equations for the three forces that affect the flight of the ball: the force of gravity, the drag force and the lift force due to the Magnus effect (the force due to a spinning object moving in an airflow). The lift and drag forces depend on air density. Altitude and weather affect air density, which in turn affects how far a batted baseball or softball travels. This chapter shows that air density is inversely related to altitude, temperature and humidity, and is directly related to barometric pressure. Regression analysis is used to show the relative importance of each of the four factors (altitude, temperature, humidity and barometric pressure) and to look for interactions between them. As shown by this model, on a typical July afternoon in a major-league baseball stadium, altitude is easily the most important factor, explaining 80% of the variability. This is followed by temperature (13%), barometric pressure (4%) and relative humidity (3%). A simple linear algebraic equation presented in this chapter predicts air density well. A different model shows how the batted-ball’s range depends on both the drag force and the Magnus force and considers the relative importance of the drag and Magnus forces. As asides, this chapter shows that a home run ball might go 26 feet farther in San Francisco then in Denver and it answers the question, “Can a tennis ball be thrown farther that a baseball?”

This is a preview of subscription content, log in via an institution.

References

  • Adair, R.K.: Comments on “How to hit home runs: optimum baseball bat swing parameters for maximum range trajectories,” by G. S. Sawicki, M. Hubbard and W. J. Stronge. Am. J. Phys. 73(2), 184–185 (2004)

    Article  Google Scholar 

  • Adair, R.K.: The Physics of Baseball. HarperCollins, New York (2002)

    Google Scholar 

  • Alam, F., Ho, H., Smith, L., Subic, A., Chowdhury, H., Kumar, A.: A study of baseball and softball aerodynamics. Procedia Eng. 34, 86–91 (2012)

    Article  Google Scholar 

  • Alaways, L.W.: Aerodynamics of a curve-ball: the Sikorsky/Lightfoot lift data. Proceedings of 7th ISEA Conference, Biarritz, 2–6 June 2008

    Google Scholar 

  • Alaways, L.W., Mish, S.P., Hubbard, M.: Identification of release conditions and aerodynamic forces in pitched-baseball trajectories. J. Appl. Biomech. 17, 63–76 (2001)

    Article  Google Scholar 

  • Achenbach, E.: Experiments on the flow past spheres at very high Reynolds numbers. J. Fluid Mech. 54(3), 565–575 (1972)

    Article  Google Scholar 

  • Bahill, A.T., Baldwin, D.G.: Mechanics of baseball pitching and batting, Chapter 16. In: Ghista, D. (ed.) Applied Biomedical Engineering Mechanics, pp. 445–488. CRC Press and Taylor & Francis Asia Pacific, Boca Raton FL (2008)

    Google Scholar 

  • Bahill, A.T., Baldwin, D.G.: The rising fastball and other perceptual illusions of batters. In: Hung, G., Pallis, J. (eds.) Biomedical Engineering Principles in Sports, pp. 257–287. Kluwer Academic, New York (2004)

    Chapter  Google Scholar 

  • Bahill, A.T., Baldwin, D.G.: Describing baseball pitch movement with right-hand rules. Comput. Biol. Med. 37, 1001–1008 (2007)

    Article  Google Scholar 

  • Bahill, A.T., Baldwin, D.G.: The vertical illusions of batters. Baseb. Res. J. 32, 26–30 (2003)

    Google Scholar 

  • Bahill, A.T., Karnavas, W.J.: The perceptual illusion of baseball's rising fastball and breaking curveball. J. Exp. Psychol. Hum. Percept. Perform. 19, 3–14 (1993)

    Article  Google Scholar 

  • Bahill, A.T., Baldwin, D.G., Ramberg, J.S.: Effects of altitude and atmospheric conditions on the flight of a baseball. Int. J. Sports Sci. Eng. 3(2), 109–128 (2009.) ISSN 1750-9823

    Google Scholar 

  • Bahill, A.T., Baldwin, D.G., Venkateswaran, J.: Predicting a baseball’s path. Am. Sci. 93(3), 218–225 (2005)

    Article  Google Scholar 

  • Bahill, A.T., Botta, R., Daniels, J.: The Zachman framework populated with baseball models. J. Enterp. Archit. 2(4), 50–68 (2006)

    Google Scholar 

  • Bahill, A.T.: The ideal moment of inertia for a baseball or softball bat. IEEE Trans. Syst. Man Cybern. Syst. Hum. 34(2), 197–204 (2004)

    Article  Google Scholar 

  • Baldwin, D.G., Bahill, A.T.: A model of the bat’s vertical sweetness gradient. In: Hubbard, M., Mehta, R.D., Pallis, J. M. (eds.) The Engineering of Sport 5, vol. 2, pp. 305–311. Proceedings of the 5th international engineering of sport conference, September 13–16, 2004, Davis, CA, International Sports Engineering Association (ISEA), Sheffield. ISBN 0-9547861-1-4 (2004)

    Google Scholar 

  • Baldwin, D.G., Bahill, A.T., Nathan, A.: Nickel and dime pitches. Baseb. Res. J. 35, 25–29 (2007)

    Google Scholar 

  • Baldwin, D.G.: Snake Jazz. Xlibris Corp. http://www.xlibris.com/Bookstore/BookSearchResults.aspx?Title=Snake+Jazz&Author=Baldwin& (2007)

  • Buck, A.L.: New equations for computing vapor pressure and enhancement factor. J. Appl. Meteorol. 20, 1527–1532 (1981). Buck fine-tuned his equation in 1996

    Google Scholar 

  • Chambers, F., Page, B., Zaidins, C.: Atmosphere, weather, and baseball: how much farther do baseballs really fly at Denver’s Coors field? Prof. Geogr. 55(4), 491–508 (2003)

    Article  Google Scholar 

  • Clanet, C.: Sports ballistics. Annu. Rev. Fluid Mech. 47, 455–478 (2015). https://doi.org/10.1146/annurev-fluid-010313-141255

    Article  Google Scholar 

  • CRC Handbook of Chemistry & Physics, p. F-10, 61st ed., CRC Press, Boca Raton (1980–1981),

    Google Scholar 

  • Frohlich, C.: Aerodynamic drag crisis and its possible effect on the flight of baseballs. Am. J. Phys. 52(4), 325–334 (1984)

    Article  Google Scholar 

  • Harris, S.: A century of scientific research. Am. Sci. 74(5), 542–545 (1986.) Stable URL: http://www.jstor.org/stable/27854344

    Google Scholar 

  • Kindall, J.: Sports Illustrated Baseball. Harper & Row, New York (1983)

    Google Scholar 

  • Kahneman, D.: A new etiquette for replication. Soc. Psychol. 45(4), 12–13 (2014)

    Google Scholar 

  • Kahneman, D., A New Etiquette for Replication. https://www.scribd.com/document/225285909/Kahneman-Commentary (2016)

  • Kagan, D., Nathan, A.M.: Simplified models for the drag coefficient of a pitched baseball. Phys. Teach. 52, 278–280 (2014). https://doi.org/10.1119/1.4872406

    Article  Google Scholar 

  • Kensrud, J.R.: Determining aerodynamic properties of sports balls in situ, Master of Science thesis in mechanical engineering, Washington State University (2010)

    Google Scholar 

  • Kensrud, J. R., Nathan, A. M. and Smith, L. V., Oblique collisions of baseballs and softballs with a bat, American Journal of Physics, 85, 503–509 (2017); doi: http://dx.doi.org/10.1119/1.4982793

  • Kensrud, J.R., Smith, L.V., Nathan, A., Nevins, D.: Relating baseball seam height to carry distance. Procedia Eng. 112, 406–411 (2015)

    Article  Google Scholar 

  • Jefferys, W.H., Berger, J.O.: Ockham's razor and Bayesian analysis. Am. Sci. 80, 64–72 (1992)

    Google Scholar 

  • NASA.: http://www.grc.nasa.gov/WWW/K-12/airplane/bga.html (2008). Retrieved Sept 2017

  • Nathan, A.M., Hopkins, J., Chong, L., Kaczmarski, H.: The effect of spin on the flight of a baseball. SABR conference, Seattle, June (2006)

    Google Scholar 

  • Nathan, A.M.: The effect of spin on the flight of a baseball. Am. J. Phys. 76(2), 118–124 (2008)

    Article  Google Scholar 

  • Nathan, A.M.: Going deep on goin’ deep, The Hardball Times, April 6. http://www.hardballtimes.com/going-deep-on-goin-deep/ (2016)

  • Newton, I.: A letter of Mr. Isaac Newton, of the University of Cambridge, containing his new theory about light and colors. Philos. Trans. R. Soc. 7, 3075–3087 (1671–1672)

    Article  Google Scholar 

  • NOAA’s National Weather Service.: Surface pressure analysis … clearing the confusion in the presence of different solutions. http://www.crh.noaa.gov/unr/?n=mslp (2001). Accessed Sept 2017

  • McBeath, M.K., Nathan, A.M., Bahill, A.T., Baldwin, D.G.: Paradoxical pop-ups: why are they difficult to catch? Am. J. Phys. 76(8), 723–729 (2008)

    Article  Google Scholar 

  • Mehta, R.D., Pallis, J.M.: Sports ball aerodynamics: effects of velocity, spin and surface roughness. In: Froes, E.H., Haake, S.J. (eds.) Materials and Science in Sports, pp. 185–197. TIMIS, Warrendale (2001)

    Google Scholar 

  • Petriello, M.: The spectrum of Statcast: spin vs. velocity. http://m.mlb.com/news/article/160896926/statcast-spin-rate-compared-to-velocity/ (2016). Accessed Sept 2017

  • Planck, M.: Wissenschaftliche Selbstbiographie. Mit einem Bildnis und der von Max von Laue gehaltenen Traueransprache. Johann Ambrosius Barth Verlag (Leipzig 1948), p. 22, as translated in Scientific Autobiography and Other Papers, trans. F. Gaynor (New York, 1949), pp. 33–34 (as cited in T. S. Kuhn, The Structure of Scientific Revolutions)

    Google Scholar 

  • Rae, W.J.: Mechanics of the forward pass. In: Hung, G., Pallis, J. (eds.) Biomedical Engineering Principles in Sports, pp. 291–319. Kluwer Academic, New York (2004)

    Chapter  Google Scholar 

  • Robins, B.: New principles of gunnery: containing, the determination of the force of gun-powder, and investigation of the difference in the resisting power of the air to swift and slow motions. J. Nourse, London, Available online through Early English Books Online (1742)

    Google Scholar 

  • Sarafian, H.: Impact of the drag force and the Magnus effect on the trajectory of a baseball. World J. Mech. 5, 49–58 (2015.) http://dx.doi.org/10.4236/wjm.2015.54006

    Article  Google Scholar 

  • Sawicki, G.S., Hubbard, M., Stronge, W.J.: How to hit home runs: optimum baseball bat swing parameters for maximum range trajectories. Am. J. Phys. 71(11), 1152–1162 (2003)

    Article  Google Scholar 

  • Sawicki, G.S., Hubbard, M., Stronge, W.J.: Reply to comments on “how to hit home runs: optimum baseball bat swing parameters for maximum range trajectories.”. Am. J. Phys. 73(2), 185–189 (2004)

    Article  Google Scholar 

  • Selin, C.: An analysis of the aerodynamics of pitched baseballs. Res. Q. 30(2), 232–240 (1959)

    Google Scholar 

  • Shelquist, R.: Density altitude calculator, Shelquist engineering. https://wahiduddin.net/calc/calc_da_rh.htm (2017). Accessed Jan 2017

  • Smith, E.D., Szidarovszky, F., Karnavas, W.J., Bahill, A.T.: Sensitivity analysis, a powerful system validation technique. Open Cybern. Syst. J.. http://www.bentham.org/open/tocsj/openaccess2.htm. 2, 39–56 (2008). https://doi.org/10.2174/1874110X00802010039

    Article  MathSciNet  Google Scholar 

  • Stark, L.: Neurological Control Systems, Studies in Bioengineering. Plenum Press, New York (1968)

    Google Scholar 

  • Stodden, V., McNutt, M., Bailey, D.H., Dellman, E., Gil, Y., Hanson, B., Heroux, M.A., Ioannidis, J.P., Taufer, M.: Enhancing reproducibility for computational methods. Science. 354(6317), 1240–1241 (2016)

    Article  Google Scholar 

  • Watts, R.G., Bahill, A.T.: Keep Your Eye on the Ball: the Science and Folklore of Baseball. W. H. Freeman and Co., New York (1990)

    Google Scholar 

  • Watts, R.G., Bahill, A.T.: Keep Your Eye on the Ball: Curveballs, Knuckleballs and Fallacies of Baseball. W. H. Freeman, New York (2000)

    Google Scholar 

  • Watts, R. G., Baroni, S.: Baseball-bat collisions and the resulting trajectories of spinning balls. Am. J. Phys. 57(1), 40–45 (1989) doi: http://dx.doi.org/10.1119/1.15864

  • Watts, R.G., Ferrer, R.: The lateral force on a spinning sphere: aerodynamics of a curveball. Am. J. Phys. New Orleans. 55(1), 40–44 (1987)

    Article  Google Scholar 

  • Watts, R.G., Sawyer, E.: Aerodynamics of a knuckleball. Am. J. Phys. New Orleans. 43(11), 960–963 (1975)

    Article  Google Scholar 

  • WeatherLink Software.: http://www.davisnet.com/weather/products (2017). Accessed Feb 2017

  • Williams, D.: BaseballSavant. https://baseballsavant.mlb.com/statcast_search (2017). Accessed Sept 2017

Download references

Author information

Authors and Affiliations

Authors

Appendix. Weather Data for Major-League Baseball Stadiums

Appendix. Weather Data for Major-League Baseball Stadiums

City/State

Team name

Altitude of home plate, feet

Altitude of home plate, m

Average daily high temperature in July °F

Average daily high temperature in July °C

SVP, mm Hg

Relative Humidity on an average July afternoon, percent

Average sea level corrected Barometric Pressure, inch Hg

Average sea level corrected barometric pressure, Pisa

Average sea level corrected barometric pressure, mm Hg

Average absolute pressure, mm Hg. Not sea-level corrected.

Air density, kg/m3

Arizona

Diamondbacks

1061

323

104

40

55

20

29.81

14.64

757

730

1.077

Atlanta

Braves

942

287

90

32

36

59

29.99

14.73

762

738

1.111

Baltimore

Orioles

36

11

87

31

33

53

29.99

14.73

762

761

1.154

Boston

Red Sox

16

5

82

28

28

57

29.93

14.70

760

760

1.164

Chicago

Cubs

601

183

84

29

30

60

29.93

14.70

760

745

1.135

Chicago

White Sox

595

181

84

29

30

60

29.93

14.70

760

745

1.135

Cincinnati

Reds

490

149

86

30

32

58

30.00

14.74

762

748

1.136

Cleveland

Indians

653

199

81

27

27

57

30.05

14.76

763

746

1.145

Colorado

Rockies

5186

1581

88

31

34

34

29.98

14.72

761

638

0.967

Detroit

Tigers

578

176

84

29

30

54

30.06

14.76

763

748

1.141

Houston

Astros

21

6

94

34

41

63

29.97

14.72

761

760

1.133

Kansas City

Royals

857

261

90

32

36

64

29.97

14.72

761

739

1.111

Los Angeles

Angels

146

45

84

29

30

52

29.94

14.70

760

756

1.155

Los Angeles

Dodgers

501

153

84

29

30

52

29.94

14.70

760

747

1.140

Miami

Marlins

5

2

91

33

37

63

30.00

14.73

762

762

1.143

Milwaukee

Brewers

618

188

81

27

27

64

30.00

14.74

762

746

1.144

Minnesota

Twins

827

252

83

28

29

59

29.96

14.71

761

740

1.130

New York

Mets

12

4

84

29

30

55

30.02

14.74

763

762

1.163

New York

Yankees

33

10

84

29

30

55

30.00

14.73

762

760

1.160

Oakland

Athletics

0

0

73

23

21

55

29.95

14.71

761

761

1.188

Philadelphia

Phillies

0

0

86

30

32

54

30.01

14.74

762

762

1.157

Pittsburgh

Pirates

726

221

83

28

29

54

30.00

14.73

762

742

1.134

Saint Louis

Cardinals

438

134

90

32

36

60

29.98

14.73

762

750

1.128

San Diego

Padres

15

5

76

24

23

67

29.88

14.68

759

758

1.175

San Francisco

Giants

8

2

68

20

18

65

29.99

14.73

762

762

1.201

Seattle

Mariners

17

5

75

24

22

49

30.04

14.75

763

763

1.187

Tampa Bay

Rays

44

13

90

32

36

64

30.08

14.77

764

764

1.149

Texas

Rangers

543

166

96

36

44

53

29.97

14.72

761

747

1.112

Toronto

Blue jays

268

82

80

27

26

55

30.00

14.73

762

755

1.161

Washington

Nationals

6

2

88

31

34

53

30.00

14.73

762

761

1.152

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bahill, A.T. (2018). The Ball in Flight Model. In: The Science of Baseball. Springer, Cham. https://doi.org/10.1007/978-3-319-67032-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67032-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67031-7

  • Online ISBN: 978-3-319-67032-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics