Skip to main content

Integration of Scholarly Communication Metadata Using Knowledge Graphs

Part of the Lecture Notes in Computer Science book series (LNISA,volume 10450)


Important questions about the scientific community, e.g., what authors are the experts in a certain field, or are actively engaged in international collaborations, can be answered using publicly available datasets. However, data required to answer such questions is often scattered over multiple isolated datasets. Recently, the Knowledge Graph (KG) concept has been identified as a means for interweaving heterogeneous datasets and enhancing answer completeness and soundness. We present a pipeline for creating high quality knowledge graphs that comprise data collected from multiple isolated structured datasets. As proof of concept, we illustrate the different steps in the construction of a knowledge graph in the domain of scholarly communication metadata (SCM-KG). Particularly, we demonstrate the benefits of exploiting semantic web technology to reconcile data about authors, papers, and conferences. We conducted an experimental study on an SCM-KG that merges scientific research metadata from the DBLP bibliographic source and the Microsoft Academic Graph. The observed results provide evidence that queries are processed more effectively on top of the SCM-KG than over the isolated datasets, while execution time is not negatively affected.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-67008-9_26
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-67008-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.


  1. 1., accessed on 10 April 2017.

  2. 2. accessed on 10 April 2017.

  3. 3.

  4. 4.

  5. 5.

  6. 6.

  7. 7., accessed on 5 April 2017.

  8. 8.

    SWRC:, FOAF:

  9. 9.

    Here, a “molecule” refers to a set of one node in the knowledge graph and the immediate links to its neighbors.

  10. 10.

    The integrated WWW dataset has 346,480 triples including the “same as” links between matched instances.

  11. 11.

  12. 12.

    In the process of linking articles by an author, true positives (TP) are articles whose metadata exist in both DBLP and MAG and their instances are correctly linked in the matching step.

  13. 13., accessed on 5 April 2017.

  14. 14.


  1. Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka Jr., E.R., Mitchell, T.M.: Toward an architecture for never-ending language learning. In: Proceedings of the 24th AAAI (2010)

    Google Scholar 

  2. Choudhury, S., Agarwal, K., Purohit, S., Zhang, B., Pirrung, M., Smith, W., Thomas, M.: NOUS: construction and querying of dynamic knowledge graphs. In: ICDE (2017)

    Google Scholar 

  3. Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann, T., Sun, S., Zhang, W.: Knowledge vault: a web-scale approach to probabilistic knowledge fusion. In: SIGKDD (2014)

    Google Scholar 

  4. Ehrlinger, L., Wöß, W.: Towards a definition of knowledge graphs. In: SEMANTiCS (2016)

    Google Scholar 

  5. Ermilov, I., Auer, S., Stadler, C.: User-driven semantic mapping of tabular data. In: 9th International Conference on Semantic Systems, ISEM, pp. 105–112 (2013)

    Google Scholar 

  6. Knoblock, C.A., Szekely, P., Ambite, J.L., Goel, A., Gupta, S., Lerman, K., Muslea, M., Taheriyan, M., Mallick, P.: Semi-automatically mapping structured sources into the semantic web. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 375–390. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30284-8_32

    CrossRef  Google Scholar 

  7. Nguyen, N.T.: A method for ontology conflict resolution and integration on relation level. Cybern. Syst. 38(8), 781–797 (2007)

    CrossRef  MATH  Google Scholar 

  8. Nuzzolese, A.G., Gentile, A.L., Presutti, V., Gangemi, A.: Semantic Web Conference Ontology - A Refactoring Solution. In: Sack, H., Rizzo, G., Steinmetz, N., Mladenić, D., Auer, S., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9989, pp. 84–87. Springer, Cham (2016). doi:10.1007/978-3-319-47602-5_18

    CrossRef  Google Scholar 

  9. Paulheim, H.: Knowledge graph refinement: A survey of approaches and evaluation methods. Semantic Web 8(3), 489–508 (2017)

    CrossRef  Google Scholar 

  10. Phuoc, D.L., Quoc, H.N.M., Quoc, H.N., Nhat, T.T., Hauswirth, M.: The graph of things: A step towards the live knowledge graph of connected things. J. Web Sem., 37–38 (2016)

    Google Scholar 

  11. Singal, A.: Introducing the knowledge graph: Things, not strings (2012)

    Google Scholar 

  12. Sinha, A., Shen, Z., Song, Y., Ma, H., Eide, D., Hsu, B.P., Wang, K.: An overview of microsoft academic service (MAS) and applications. In: WWW Companion (2015)

    Google Scholar 

  13. Spanos, D., Stavrou, P., Mitrou, N.: Bringing relational databases into the semantic web: A Survey. Semantic Web 3(2), 169–209 (2012)

    Google Scholar 

  14. Stadler, C., Unbehauen, J., Westphal, P., Sherif, M.A., Lehmann, J.: Simplified RDB2RDF mapping. In: Proceedings of the Workshop on Linked Data on the Web, LDOW 2015 (2015)

    Google Scholar 

  15. Stoilos, G., Stamou, G., Kollias, S.: A string metric for ontology alignment. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 624–637. Springer, Heidelberg (2005). doi:10.1007/11574620_45

    CrossRef  Google Scholar 

  16. Szekely, P., et al.: Building and using a knowledge graph to combat human trafficking. In: Arenas, M., Corcho, O., Simperl, E., Strohmaier, M., d’Aquin, M., Srinivas, K., Groth, P., Dumontier, M., Heflin, J., Thirunarayan, K., Staab, S. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 205–221. Springer, Cham (2015). doi:10.1007/978-3-319-25010-6_12

    CrossRef  Google Scholar 

  17. Traverso-Ribón, I., Palma, G., Flores, A., Vidal, M.-E.: Considering semantics on the discovery of relations in knowledge graphs. In: Blomqvist, E., Ciancarini, P., Poggi, F., Vitali, F. (eds.) EKAW 2016. LNCS (LNAI), vol. 10024, pp. 666–680. Springer, Cham (2016). doi:10.1007/978-3-319-49004-5_43

    CrossRef  Google Scholar 

  18. Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Silk - a link discovery framework for the web of data. In: Proceedings of the 2nd Linked Data on the Web Workshop, pp. 1–6 (2009)

    Google Scholar 

Download references


This work has been partially funded by the European Commission under grant agreements 643410 (OpenAIRE2020) and 644564 (BigDataEurope), and the DFG under grant agreement AU 340/9-1 (OSCOSS).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Afshin Sadeghi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Sadeghi, A., Lange, C., Vidal, ME., Auer, S. (2017). Integration of Scholarly Communication Metadata Using Knowledge Graphs. In: Kamps, J., Tsakonas, G., Manolopoulos, Y., Iliadis, L., Karydis, I. (eds) Research and Advanced Technology for Digital Libraries. TPDL 2017. Lecture Notes in Computer Science(), vol 10450. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67007-2

  • Online ISBN: 978-3-319-67008-9

  • eBook Packages: Computer ScienceComputer Science (R0)