Advertisement

What Others Say About This Work? Scalable Extraction of Citation Contexts from Research Papers

  • Petr Knoth
  • Phil Gooch
  • Kris Jack
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10450)

Abstract

This work presents a new, scalable solution to the problem of extracting citation contexts: the textual fragments surrounding citation references. These citation contexts can be used to navigate digital libraries of research papers to help users in deciding what to read. We have developed a prototype system which can retrieve, on-demand, citation contexts from the full text of over 15 million research articles in the Mendeley catalog for a given reference research paper. The evaluation results show that our citation extraction system provides additional functionality over existing tools, has two orders of magnitude faster runtime performance, while providing a 9% improvement in F-measure over the current state-of-the-art.

Keywords

Information extraction Citation extraction Text-mining Digital libraries 

References

  1. 1.
    Khabsa, M., Giles, C.L.: The number of scholarly documents on the public web. PLOS ONE 9(5), 1–6 (2014)CrossRefGoogle Scholar
  2. 2.
    Björk, B., Roos, A., Lauri, M.: Scientific journal publishing: yearly volume and open access availability. Inf. Res. 14(1) (2009)Google Scholar
  3. 3.
    Bornmann, L., Mutz, R.: Growth rates of modern science: A bibliometric analysis. CoRR abs/1402.4578 (2014)Google Scholar
  4. 4.
    Hristakeva, M., Kershaw, D., Rossetti, M., Knoth, P., Pettit, B., Vargas, S., Jack, K.: Building recommender systems for scholarly information. In: 1st International Workshop on Scholarly Web Mining (SWM), International Conference on Web Search and Data Mining (2017)Google Scholar
  5. 5.
    Knoth, P., Zdráhal, Z.: CORE: three access levels to underpin open access. D-Lib Mag. 18(11/12) (2012)Google Scholar
  6. 6.
    Knoth, P., Anastasiou, L., Charalampous, A., Cancellieri, M., Pearce, S., Pontika, N., Bayer, V.: Towards effective research recommender systems for repositories. In: Proceedings of Open Repositories 2017, Open Repositories (2017)Google Scholar
  7. 7.
    Pride, D., Knoth, P.: Incidental or influential? - challenges in automatically detecting citation importance using publication full texts. In: 21st International Conference on Theory and Practice of Digital Libraries (TPDL) (2017)Google Scholar
  8. 8.
    Garfield, E., et al.: Citation analysis as a tool in journal evaluation. American Association for the Advancement of Science (1972)Google Scholar
  9. 9.
    Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of the 18th International Conference on Machine Learning, pp. 282–289. Morgan Kaufmann, San Francisco (2001)Google Scholar
  10. 10.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)CrossRefGoogle Scholar
  11. 11.
    Kudo, T.: CRF++: Yet another CRF toolkit. Software (2005), https://taku910.github.io/crfpp/
  12. 12.
    Tkaczyk, D., Szostek, P., Dendek, P.J., Fedoryszak, M., Bolikowski, L.: CERMINE - automatic extraction of metadata and references from scientific literature. In: 11th IAPR International Workshop on Document Analysis Systems, DAS 2014, Tours, France, 7–10 April 2014, pp. 217–221 (2014)Google Scholar
  13. 13.
    Councill, I.G., Giles, C.L., Kan, M.: Parscit: an open-source CRF reference string parsing package. In: Proceedings of the International Conference on Language Resources and Evaluation, LREC 2008, 26 May–1 June. European Language Resources Association, Marrakech, June 2008Google Scholar
  14. 14.
    Luong, M.T., Nguyen, T.D., Kan, M.Y.: Logical structure recovery in scholarly articles with rich document features. IJDLS 1(4), 1–23 (2010)Google Scholar
  15. 15.
    Kern, R., Klampfl, S.: Extraction of references using layout and formatting information from scientific articles. D-Lib Mag. 19(9/10) (2013)Google Scholar
  16. 16.
    Hearst, M.A.: Texttiling: segmenting text into multi-paragraph subtopic passages. Computat. Linguist. 23(1), 33–64 (1997)Google Scholar
  17. 17.
    Teufel, S., Siddharthan, A., Tidhar, D.: Automatic classification of citation function. In: Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing, EMNLP 2006, pp. 103–110. Association for Computational Linguistics, Stroudsburg (2006)Google Scholar
  18. 18.
    Valenzuela, M., Ha, V., Etzioni, O.: Identifying meaningful citations. In: AAAI Workshops (2015)Google Scholar
  19. 19.
    Gipp, B., Beel, J.: Citation Proximity Analysis (CPA) - a new approach for identifying related work based on co-citation analysis. In: Larsen, B., Leta, J. (eds.) Proceedings of the 12th International Conference on Scientometrics and Informetrics (ISSI 2009), vol. 2. International Society for Scientometrics and Informetrics, Rio de Janeiro, July 2009. ISSN 2175–1935Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Knowledge Media InstituteThe Open UniversityMilton KeynesUK
  2. 2.Mendeley Ltd., Elsevier B.V.LondonUK

Personalised recommendations