Skip to main content

Bacterial Control

  • Chapter
  • First Online:
Interventional Treatment of Wounds

Abstract

Infections from invasive bacteria cause both acute and chronic skin and soft tissue infections (SSTIs) and are becoming increasingly common. Certain patient populations exhibit higher risk of infection, including patients who suffer from diabetes mellitus, burns, radiation, paraplegia, obesity, immune disorders, and those who smoke. Following the diagnosis of an SSTI, an appropriate treatment plan must be quickly enacted. Common SSTIs that require special considerations include diabetic foot infections, sternal wound infections, lower extremity periprosthetic joint infections, infected burns, previously irradiated implant-based breast reconstruction infections, and infected pressure injuries. Antibiotic therapy remains the mainstay for treatment of these infections. However, surgical debridement must also be considered, in conjunction with antibiotic therapy, to remove necrotic or poorly vascularized tissue and reduce local bacterial load. Surgical debridement is especially useful when treating SSTIs that involve planktonic bacteria and biofilms. All SSTIs are different, and intervention must be tailored to the individual patient; however, the principles of treatment presented in this chapter are generally applicable as considerations for SSTI management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Sukumaran V, Senanayake S. Bacterial skin and soft tissue infections. Aust Prescr. 2016;39:159–63.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gillespie BM, Chaboyer W, Erichsen-Andersson A, Hettiarachchi RM, Kularatna S. Economic case for intraoperative interventions to prevent surgical-site infection. Br J Surg. 2017;104(2):e55–64.

    Article  CAS  PubMed  Google Scholar 

  3. Saadatian-Elahi M, Teyssou R, Vanhems P. Staphylococcus aureus, the major pathogen in orthopaedic and cardiac surgical site infections: a literature review. Int J Surg. 2008 Jun;6(3):238–45.

    Article  PubMed  Google Scholar 

  4. Viola GM, Selber JC, Crosby M, Raad II, Butler CE, Villa MT, Kronowitz SJ, Clemens MW, Garvey P, Yang W, Baumann DP. Salvaging the infected breast tissue expander: a standardized multidisciplinary approach. Plast Reconstr Surg Glob Open. 2016 Jun;4(6):e732–43.

    Google Scholar 

  5. Allegranzi B, Bischoff P, de Jonge S, Kubilay NZ, Zayed B, Gomes SM, Abbas M, Atema JJ, Gans S, van Rijen M, Boermeester MA, Egger M, Kluytmans J, Pittet D, Solomkin JS. New WHO recommendations on preoperative measures for surgical site infection prevention: an evidence-based global perspective. Lancet Infect Dis. 2016;16(12):e276–87.

    Article  PubMed  Google Scholar 

  6. Allegranzi B, Zayed B, Bischoff P, Kubilay NZ, de Jonge S, de Vries F, Gomes SM, Gans S, Wallert ED, Wu X, Abbas M, Boermeester MA, Dellinger EP, Egger M, Gastmeier P, Guirao X, Ren J, Pittet D, Solomkin JS. New WHO recommendations on intraoperative and postoperative measures for surgical site infection prevention: an evidence-based global perspective. Lancet Infect Dis. 2016;16(12):e288–303.

    Article  PubMed  Google Scholar 

  7. Dryden M, Baguneid M, Eckmann C, Corman S, Stephens J, Solem C, Li J, Charbonneau C, Baillon-Plot N, Haider S. Pathophysiology and burden of infection in patients with diabetes mellitus and peripheral vascular disease: focus on skin and soft-tissue infections. Clin Microbiol Infect. 2015;21:527–32.

    Article  Google Scholar 

  8. Bertoni AG, Saydah S, Brancati FL. Diabetes and the risk of infection-related mortality in the U.S. Diabetes Care. 2001;24(6):1044–9.

    Article  CAS  PubMed  Google Scholar 

  9. Rajagopalan S. Serious infections in elderly patients with diabetes mellitus. Clin Infect Dis. 2005;40:990–6.

    Article  PubMed  Google Scholar 

  10. Geerlings SE, Hoepelman AI. Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunol Med Microbiol. 1999;26:259–65.

    Article  CAS  PubMed  Google Scholar 

  11. Pozzilli P, Leslie RD. Infections and diabetes: mechanisms and prospects for prevention. Diabet Med. 1994;11:935–41.

    Article  CAS  PubMed  Google Scholar 

  12. Gallacher SJ, Thomson G, Fraser WD, Fisher BM, Gemmell CG, MacCuish AC. Neutrophil bactericidal function in diabetes mellitus: evidence for association with blood glucose control. Diabet Med. 1995;12:916–20.

    Article  CAS  PubMed  Google Scholar 

  13. Kok TW, Agrawal N, Sathappan SS, Chen WK. Risk factors for early implant-related surgical site infection. J Orthop Surg (Hong Kong). 2016;24(1):72–6.

    Article  CAS  Google Scholar 

  14. Amin N, Doupis J. Diabetic foot disease: from the evaluation of the “foot at risk” to the novel diabetic ulcer treatment modalities. World J Diabetes. 2016;7(7):153–64.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Young MJ, Boulton AJ, MacLeod AF, Williams DR, Sonksen PH. A multicenter study of the prevalence of diabetic peripheral neuropathy in the United Kingdom hospital clinic population. Diabetologia. 1993;36:150–4.

    Article  CAS  PubMed  Google Scholar 

  16. Boulton AJM. The importance of abnormal foot pressures and gait in causation of foot ulcers. In: Connor H, Boulton AJM, Ward JD, editors. The foot in diabetes. Chichester: Wiley; 1987. p. 11–26.

    Google Scholar 

  17. Shaw JE, Boulton AJ. The pathogenesis of diabetic foot problems: an overview. Diabetes. 1997;46(Suppl 2):S58–61.

    Article  CAS  PubMed  Google Scholar 

  18. Wheat LJ, Allen SD, Henry M, Kernek CB, Siders JA, Keubler T, Fineberg N, Norton J. Diabetic foot infections. Arch Intern Med. 1986;146:1935–40.

    Article  CAS  PubMed  Google Scholar 

  19. Strauss MB, Moon H, La S, Craig A, Ponce J, Miller S. The incidence of confounding factors in patients with diabetes mellitus hospitalized for diabetic foot ulcers. Wounds. 2016;28(8):287–94.

    PubMed  Google Scholar 

  20. National Pressure Ulcer Advisory Panel. NPUAP pressure injury stages [Internet]. 2016 April [cited 11 May 2017]. Available from: http://www.npuap.org/resources/educational-and-clinical-resources/npuap-pressure-injury-stages/

  21. Lenz K, Brandt M, Fraund-Cremer S, Cremer J. Coronary artery bypass surgery in diabetic patients – risk factors for sternal wound infections. GMS Interdiscip Plast Reconstr Surg DGPW. 2016;5:Doc 18.

    Google Scholar 

  22. Jamsen E, Nevalainen P, Eskelinen A, Huotari K, Kalliovalkama J, Moilanen T. Obesity, diabetes, and preoperative hyperglycemia as predictors of periprosthetic joint infection. J Bone Joint Surg Am. 2012;94:e101(1–9).

    Google Scholar 

  23. Kunutsor SK, Whitehouse MR, Blom AW, Beswick AD, INFORM Team. Patient-related risk factors for periprosthetic joint infection after total joint arthroplasty: a systematic review and meta-analysis. PLoS One. 2016;11(3):e0150866.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Shah BR, Hux JE. Quanitifying the risk of infectious diseases for people with diabetes. Diabetes Care. 2003;26(2):510–3.

    Article  PubMed  Google Scholar 

  25. Church D, Elsayed S, Reid O, Winston B, Lindsay R. Burn wound infections. Clin Microbiol Rev. 2006;19(2):403–34.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Erol S, Altoparlak U, Akcay MN, Celebi F, Parlak M. Changes of microbial flora and wound colonization in burned patients. Burns. 2004 Jun;30(4):357–61.

    Article  PubMed  Google Scholar 

  27. Sheridan RL. Evaluating and managing burn wounds. Dermatol Nurs. 2000; 12(1):17–8, 21–8.

    Google Scholar 

  28. Gamelli RL, He LK, Liu H. Marrow granulocyte-macrophage progenitor cell response to burn injury as modified by endotoxin and indomethacin. J Trauma. 1994;37(3):339–46.

    Article  CAS  PubMed  Google Scholar 

  29. Coban YK. Infection control in severely burned patients. World J Crit Care Med. 2012;1(4):94–101.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tancheva D, Hadjiiski O. Effect of early nutritional support on clinical course and septic complications in patients with severe burns. Ann Burns Fire Disasters. 2005;18:74–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Anderson K, Hamm RL. Factors that impair wound healing. J Am Coll Clin Wound Spec. 2012;4(4):84–91.

    Article  PubMed  Google Scholar 

  32. Nahabedian MY, Tsangaris T, Momen B, Manson PN. Infectious complications following breast reconstruction with expanders and implants. Plast Reconstr Surg. 2003;112(2):467–76.

    Article  PubMed  Google Scholar 

  33. Cordeiro PG, Albornoz CR, McCormick B, Hu Q, Van Zee K. The impact of postmastectomy radiotherapy on two-stage implant breast reconstruction: an ananlysis of long-term surgical outcomes, aesthetic results, and satisfaction over 13 years. Plast Reconstr Surg. 2014;134:588–95.

    Article  CAS  PubMed  Google Scholar 

  34. Kearney AM, Brown MS, Soltanian HT. Timing of radiation and outcomes in implant-based breast reconstruction. J Plast Reconstr Aesthet Surg. 2015;68:1719–26.

    Article  PubMed  Google Scholar 

  35. Olsen MA, Lefta M, Dietz JR, Brandt KE, Aft R, Matthews R, Mayfield J, Fraser VJ. Risk factors for surgical site infection following major breast surgery. J Am Coll Surg. 2008;207(3):326–35.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Reish RG, Damjanovic B, Austen WG Jr, Winograd J, Liao EC, Cetrulo CL, Balkin DM, Colwell AS. Infection following implant-based reconstruction in 1952 consecutive breast reconstructions. Plast Reconstr Surg. 2013;131(6):1223–30.

    Article  CAS  PubMed  Google Scholar 

  37. Francis SH, Ruberg RL, Stevenson KB, Beck CE, Ruppert AS, Harper JT, Boehmler JH 4th, Miller MJ. Independent risk factors for infection in tissue expander breast reconstruction. Plast Reconstr Surg. 2009;124(6):1790–6.

    Article  CAS  PubMed  Google Scholar 

  38. Viola GM, Baumann DP, Mohan K, Selber J, Garvey P, Reece G, Raad II, Rolston KV, Crosby MA. Improving antimicrobial regiments for the treatment of breast tissue expander-related infections. Plast Reconstr Surg Glob Open. 2016 May;4(5):e704–14.

    Google Scholar 

  39. Sutton E, Miyagaki H, Bellini G, Shantha Kumara HM, Yan X, Howe B, Feigel A, Whelan RL. Risk factors for superficial surgical site infection after elective rectal cancer resection: a multivariate analysis of 8880 patients from the American College of Surgeons National Surgical Quality Improvement Program database. J Surg Res. 2017;207:205–14.

    Article  PubMed  Google Scholar 

  40. Hughes MA, Parisi M, Grossman S, Kleinberg L. Primary brain tumors treated with steroids and radiotherapy: low CD4 counts and risk of infection. Int J Radiat Oncol Biol Phys. 2005;62(5):1423–6.

    Article  CAS  PubMed  Google Scholar 

  41. Panghal M, Kaushal V, Kadayan S, Yadav JP. Incidence and risk factors for infection in oral cancer patients undergoing different treatments protocols. BMC Oral Health. 2012;12:22.

    Article  PubMed  PubMed Central  Google Scholar 

  42. National Institute for Health and Care Excellence. The prevention and management of pressure ulcers in primary and secondary care [Internet]. 2014 April [cited 24 December 2016]. Available from: https://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0068960/

  43. Montgomerie JZ. Infections in patients with spinal cord injuries. Clin Infect Dis. 1997;25:1285–92.

    Article  CAS  PubMed  Google Scholar 

  44. Richardson RR, Meyer PR Jr. Prevalence and incidence of pressure sores in acute spinal cord injuries. Paraplegia. 1981;19:235–47.

    CAS  PubMed  Google Scholar 

  45. Cruse JM, Lewis RE, Roe DL, Dilioglou S, Blaine MC, Wallace WF, Chen RS. Facilitation of immune function, healing of pressure ulcers, and nutritional status in spinal cord injury patients. Exp Mol Pathol. 2000;68:38–54.

    Article  CAS  PubMed  Google Scholar 

  46. Rubin-Asher D, Zeilig G, Klieger M, Adunsky A, Weingarden H. Dermatological findings following acute traumatic spinal cord injury. Spinal Cord. 2005;43:175–8.

    Article  CAS  PubMed  Google Scholar 

  47. Dahl MV. Dermatophytosis and the immune response. J Am Acad Dermatol. 1994;31(3 part 2):S34–41.

    Article  CAS  PubMed  Google Scholar 

  48. Nash MS. Known and plausible modulators of depressed immune functions following spinal cord injuries. J Spinal Cord Med. 2000;23:111–20.

    Article  CAS  PubMed  Google Scholar 

  49. Balachandran S, Lee A, Denehy L, Lin KY, Royse A, Royse C, El-Ansary D. Risk factors for sternal complications after cardiac operations: a systematic review. Ann Thorac Surg. 2016;102:2109–17.

    Article  PubMed  Google Scholar 

  50. Marmor S, Kerroumi Y. Patient-specific risk factors for infection in arthroplasty procedure. Orthop Traumatol Surg Res. 2016;102:S113–9.

    Article  CAS  PubMed  Google Scholar 

  51. Hainer V, Zamrazilova H, Kunesova M, Bendlova B, Aldhoon-Hainerova I. Obesity and infection: reciprocal causality. Physiol Res. 2015;64(Suppl 2):S105–19.

    CAS  PubMed  Google Scholar 

  52. Tanaka S, Inoue S, Isoda F, Waseda M, Ishihara M, Yamakawa T, Sugiyama A, Takamura Y, Okuda K. Impaired immunity in obesity: suppressed but reversible lymphocytes responsiveness. Int J Obes Relat Metab Disord. 1993;17:631–6.

    CAS  PubMed  Google Scholar 

  53. Tanaka S, Isoda F, Ishihara Y, Kimura M, Yamakawa T. T lymphopaenia in relation to body mass index and TNF-alpha in human obesity: adequate weight reduction can be corrective. Clin Endocrinol. 2001;54:347–54.

    CAS  Google Scholar 

  54. Nieman DC, Hanson DA, Nehlsen-Cannarella SL, Ekkens M, Utter AC, Butterworth DE, Fagoaga OR. Influence of obesity on immune function. J Am Diet Assoc. 1999;99:294–9.

    Article  CAS  PubMed  Google Scholar 

  55. Namba RS, Paxton L, Fithian DC, Stone ML. Obesity and perioperative morbidity in total hip and total knee arthroplasty patients. J Arthroplast. 2005;20(7 Suppl. 3):46–50.

    Article  Google Scholar 

  56. Waisbren E, Rosen H, Bader AM, Lipsitz SR, Rogers SO Jr, Eriksson E. Percent body fat and prediction of surgical site infection. J Am Coll Surg. 2010;210(4):381–9.

    Article  PubMed  Google Scholar 

  57. Guo S, DiPietro LA. Factors affecting wound healing. J Dent Res. 2010;89(3):219–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ahn C, Mulligan P, Salcido RS. Smoking-the bane of wound healing: biomedical interventions and social influences. Adv Skin Wound Care. 2008;21(5):227–36.

    Article  PubMed  Google Scholar 

  59. Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR. Guideline for prevention of surgical site infection 1999. Infect Control Hosp Epidemiol. 1999;20:250–78.

    Article  CAS  PubMed  Google Scholar 

  60. Arcavi L, Benowitz NL. Cigarette smoking and infection. Arch Intern Med. 2004;164:2206–16.

    Article  PubMed  Google Scholar 

  61. Sopori ML, Kozak W, Savage SM, Geng Y, Soszynski D, Kluger MJ, Perryman EK, Snow GE. Effect of nicotine on the immune system: possible regulation of immune responses by central and peripheral mechanisms. Psychoneuroendocrinology. 1998;23:189–204.

    Article  CAS  PubMed  Google Scholar 

  62. Mili F, Flanders WD, Boring JR, Annest JL, Destefano F. The associations of race, cigarette smoking, and smoking cessation to measures of the immune system in middle-aged men. Clin Immunol Immunopathol. 1991;59:187–200.

    Article  CAS  PubMed  Google Scholar 

  63. Hersey P, Prendergast D, Edwards A. Effects of cigarette smoking on the immune system: follow-up studies in normal subjects after cessation of smoking. Med J Aust. 1983;2:425–9.

    CAS  PubMed  Google Scholar 

  64. Edwards BL, Stukenborg GJ, Brenin DR, Schroen AT. Use of prophylactic postoperative antibiotics during surgical drain presence following mastectomy. Ann Surg Oncol. 2014;21(10):3249–55.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Nagachinta T, Stephens M, Reitz B, Polk BF. Risk factors for surgical wound infection following cardiac surgery. J Infect Dis. 1987;156:967–73.

    Article  CAS  PubMed  Google Scholar 

  66. Kong L, Liu Z, Meng F, Shen Y. Smoking and risk of surgical site infection after spinal surgery: a systematic review and meta-analysis. Surg Infect. 2016;(2):206–14.

    Google Scholar 

  67. Moffarah AS, Al Mohajer M, Hurwitz BL, Armstrong DG. Skin and soft tissue infections. Microbiol Spectr. 2016 Aug;4(4): DMIH2-0014–2015.

    Google Scholar 

  68. Stevens DL, Bisno AL, Chambers HF, Dellinger EP, Goldstein EJC, Gorbach L, Hirschmann JV, Kaplan SL, Montoya JG, Wade JC. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the infectious diseases society of America. Clin Infect Dis. 2014;59:147–59.

    Article  PubMed  Google Scholar 

  69. Sartelli M, Malangoni MA, May AK, Viale P, Kao LS, Catena F, Ansaloni L, Moore EE, Moore FA, Peitzman AB, Coimbra R, Leppaniemi A, Kluger Y, Biffl W, Koike K, Girardis M, Ordonez CA, Tavola M, Cainzos M, Di Saverio S, Fraga GP, Gerych I, Kelly MD, Taviloglu K, Wani I, Marwah S, Bala M, Ghnnam W, Shaikh N, Chiara O, Faro MP, Pereira GA, Gomes CA, Coccolini F, Trana C, Corbella D, Brambillasca P, Cui Y, Lohse HAS, Khokha V, Kok KYY, Hong S-K, Yuan K-C. World Society of Emergency Surgery (WSES) guidelines for management of skin and soft tissue infections. World J Emerg Surg. 2014;9(57):1–18.

    Google Scholar 

  70. Esposito S, Noviello S, Leone S. Epidemiology and microbiology of skin and soft tissue infections. Curr Opin Infect Dis. 2016;29:109–15.

    Article  PubMed  Google Scholar 

  71. White RJ, Cutting KF. Critical colonization – the concept under scrutiny. Ostomy Wound Manage. 2006;52(11):50–6.

    PubMed  Google Scholar 

  72. Turtiainen J, Hakala T, Hakkarainen T, Karhukorpi J. The impact of surgical wound bacterial colonization on the incidence of surgical site infection after lower limb vascular surgery: a prospective observational study. Eur J Vasc Endovasc Surg. 2014;47(4):411–7.

    Article  CAS  PubMed  Google Scholar 

  73. Yu Y, Tan M, Chen H, Wu Z, Xu L, Li J, Cao J, Yang Y, Xiao X, Lian X, Lu X, Tu Y. Non-thermal plasma suppresses bacterial colonization on skin wound and promotes wound healing in mice. J Huazhong Univ Sci Technolog Med Sci. 2011;31(3):390–4.

    Article  PubMed  Google Scholar 

  74. Saleh K, Sonesson A, Persson B, Riesbeck K, Schmidtchen A. A descriptive study of bacterial load of full-thickness surgical wounds in dermatologic surgery. Dermatol Surg. 2011;37(7):1014–22.

    Article  CAS  PubMed  Google Scholar 

  75. Lineaweaver WC, Jacob S, Yan H, Zhang F. Wound cultures as predictors of complications in reconstructive flap procedures. Ann Plast Surg. 2011;66(5):572–4.

    Article  CAS  PubMed  Google Scholar 

  76. Cardona AF, Wilson SE. Skin and soft-tissue infections: a critical review and the role of telavancin in their treatment. Clin Infect Dis. 2015;61(Suppl 2):S69–78.

    Article  CAS  PubMed  Google Scholar 

  77. Bjarnsholt T. The role of bacterial biofilms in chronic infections. APMIS Suppl. 2013;136:1–51.

    Article  CAS  Google Scholar 

  78. Ki V, Rotstein C. Bacterial skin and soft tissue infections in adults: a review of their epidemiology, pathogenesis, diagnosis, treatment and site of care. Can J Infect Dis Med Microbiol. 2008;19(2):173–84.

    PubMed  PubMed Central  Google Scholar 

  79. Rondas AA, Schols JM, Stobberingh EE, Halfens RJ. Prevalence of chronic wounds and structural quality indicators of chronic wound care in Dutch nursing homes. Int Wound J. 2015;12(6):630–5.

    Article  PubMed  Google Scholar 

  80. Clinton A, Carter T. Chronic wound biofilms: pathogenesis and potential therapies. Lab Med. 2015;46(4):277–84.

    Article  PubMed  Google Scholar 

  81. Jeffery Marano R, Jane Wallace H, Wijeratne D, William Fear M, San Wong H, O’Handley R. Secreted biofilm factors adversely affect cellular wound healing responses in vitro. Sci Rep. 2015;5:13296–306.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Suaya JA, Mera RM, Cassidy A, O’Hara P, Amrine-Madsen H, Burstin S, Miller LG. Incidence and cost of hospitalizations associated with Staphylococcus aureus skin and soft tissue infections in the United States from 2001 through 2009. BMC Infect Dis. 2014;14:296–303.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Reiber GE, Ledoux WR. Epidemiology of diabetic foot ulcers and amputations: evidence for prevention. In: Williams R, Herman W, Kinmonth AL, Wareham NJ, editors. The evidence base for diabetes care. Chichester/Hoboken: Wiley; 2003. p. 641–65.

    Google Scholar 

  84. Lavery LA, Armstrong DG, Wunderlich RP, Mohler MJ, Wendel CS, Lipsky BA. Risk factors for foot infections in individuals with diabetes. Diabetes Care. 2006;29:1288–93.

    Article  PubMed  Google Scholar 

  85. Veves A, Giurini J, LoGerfo F. The diabetic foot: medical and surgical management. Totowa: Humana Press; 2006.

    Book  Google Scholar 

  86. Reveles KR, Duhon BM, Moore RJ, Hand EO, Howell CK. Epidemiology of methicillin-resistant Staphylococcus aureus diabetic foot infections in a large academic hospital: implications for antimicrobial stewardship. PLoS One. 2016;11(8):1–8.

    Google Scholar 

  87. Centers for Disease Control and Prevention. 2014 National diabetes statistics report [Internet]. 2015 May 15 [cited 31 December 2016]. Available from: https://www.cdc.gov/diabetes/pubs/statsreport14/national-diabetes-report-web.pdf

  88. Wei C, Granick MS. Surgical management of chronic wounds. Wounds. 2008;20(3):62–6.

    PubMed  Google Scholar 

  89. Strauss MB. Hyperbaric oxygen as an intervention for managing wound hypoxia: its role and usefulness in diabetic foot wounds. Foot Ankle Int. 2005;26:15–8.

    Article  PubMed  Google Scholar 

  90. Price BL, Lovering AM, Bowling FL, Dobson CB. Development of a novel collagen wound model to stimulate the activity and distribution of antimicrobials in soft tissue during diabetic foot infection. Antimicrob Agents Chemother. 2016;60(11):6880–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Watters CM, Burton T, Kirui DK, Millenbaugh NJ. Enzymatic degradation of in vitro Staphylococcus aureus biofilms supplemented with human plasma. Infect Drug Resist. 2016;9:71–8.

    PubMed  PubMed Central  Google Scholar 

  92. Brandenburg KS, Calderon DF, Kierski PR, Brown AL, Shah NM, Abbott NL, Schurr MJ, Murphy CJ, McAnulty JF, Czuprynski CJ. Inhibition of Pseudomonas aeruginosa biofilm formation on wound dressings. Wound Repair Regen. 2015;23(6):842–54.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Ahire JJ, Hattingh M, Neveling DP, Dicks LM. Copper-containing anti-biofilm nanofiber scaffolds as a wound dressing material. PLoS One. 2016;11(3):1–12.

    Google Scholar 

  94. Barret JP, Herndon DN. Modulation of inflammatory and catabolic responses in severely burned children by early burn wound excision in the first 24 hours. Arch Surg. 2003;138(2):127–32.

    Article  PubMed  Google Scholar 

  95. Altoparlak U, Erol S, Akcay MN, Celebi F, Kadanali A. The time-related changes of antimicrobial resistance patterns and predominant bacterial profiles of burn wounds and body flora of burned patients. Burns. 2004;30:660–4.

    Article  PubMed  Google Scholar 

  96. Heggers, JP, Hawkins, H, Edgar, P, Villarreal, C, Herndon, D.N. Treatment of infections in burns. Herndon DN, Burn care. 2 London: W.B. Saunders/Bailliere Tindall; 2001. 120–169.

    Google Scholar 

  97. Yang B, Wang X, Li Z, Qu Q, Qiu Y. Beneficial effects of silver foam dressing on healing of wounds with ulcers and infection control of burn patients. Pak J Med Sci. 2015;31(6):1334–9.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Selig HF, Lumenta DB, Giretzlehner M, Jeschke MG, Upton D, Kamolz LP. The properties of an “ideal” burn wound dressing – what do we need in daily clinical practice? Results of a worldwide online survey among burn care specialists. Burns. 2012;38(7):960–6.

    Article  PubMed  Google Scholar 

  99. Ooi AS, Song DH. Reducing infection risk in implant-based breast-reconstruction surgery: challenges and solutions. Breast Cancer (Dove Med Press). 2016;8:161–72.

    Google Scholar 

  100. McCarthy CM, Mehrara BJ, Riedel E. Predicting complications following expander/implant breast reconstruction: an outcomes analysis based on preoperative clinical risk. Plast Reconstr Surg. 2008;121(6):1886–92.

    Article  CAS  PubMed  Google Scholar 

  101. Kato H, Nakagami G, Iwahira Y, Otani R, Nagase T, Iizaka S, Tamai N, Matsuyama Y, Sanada H. Risk factors and risk scoring tool for infection during tissue expansion in tissue expander and implant breast reconstruction. Breast J. 2013;19(6):618–26.

    Article  PubMed  Google Scholar 

  102. Phillips BT, Wang ED, Mirrer J, Lanier ST, Khan SU, Dagum AB, Bui DT. Current practice among plastic surgeons of antibiotic prophylaxis and closed-suction drains in breast reconstruction: experience, evidence, and implications for postoperative care. Ann Plast Surg. 2011;66:460–5.

    Article  CAS  PubMed  Google Scholar 

  103. Reish RG, Damjanovic B, Austen WG Jr, Winograd J, Liao EC, Cetrulo CL, Balkin DM, Colwell AS. Infection following implant-based reconstruction in 1952 consecutive breast reconstructions: salvage rates and predictors of success. Plast Reconstr Surg. 2013;131:1223–30.

    Article  CAS  PubMed  Google Scholar 

  104. Spear SL, Seruya M. Management of the infected or exposed breast prosthesis: a single surgeon’s 15 year experience with 69 patients. Plast Reconstr Surg. 2010;125:1074–84.

    Article  CAS  PubMed  Google Scholar 

  105. Spear SL, Howard MA, Boehmler JH, Ducic I, Low M, Abbruzzesse MR. The infected or exposed breast implant: management and treatment strategies. Plast Reconstr Surg. 2004;113(6):1634–44.

    Article  PubMed  Google Scholar 

  106. Schiffman J, Golinko MS, Yan A, Flattau A, Tomic-Canic M, Brem H. Operative debridement of pressure ulcers. World J Surg. 2009;33:1396–402.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Li T, Zhang L, Han L, Wang G, Yin P, Li Z, Zhang L, Guo Q, Liu D, Tang P. Early application of negative pressure wound therapy to acute wounds contaminated by Staphylococcus aureus: an effective approach to prevention biofilm formation. Exp Ther Med. 2016;11(3):769–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Dubert M, Pourbaix A, Alkhoder S, Mabileau G, Lescure FX, Ghodhbane W, Belorgey S, Rioux C, Armand-Lefevre L, Wolff M, Raffoul R, Nataf P, Yazdanpanah Y, Lucet JC. Sternal wound infection after cardiac surgery: management and outcome. PLoS One. 2015;10(9):1–11.

    Google Scholar 

  109. Milano CA, Kesler K, Archibald N, Sexton DJ, Jones RH. Mediastinitis after coronary artery bypass graft surgery. Risk factors and long-term survival. Circulation. 1995;92(8):2245–51.

    Article  CAS  PubMed  Google Scholar 

  110. Vos RJ, van Putte BP, Sonker U, Kloppenburg GTL. Primary closure using Redon drains for the treatment of post-sternotomy mediastinitis. Interact Cardiovasc Thorac Surg. 2014;18(1):33–7.

    Article  PubMed  Google Scholar 

  111. De Feo M, Gregorio R, Della Corte A, Marra C, Amarelli C, Renzulli A, Utili R, Cotrufo M. Deep sternal wound infection: the role of early debridement surgery. Eur J Cardiothorac Surg. 2001;19(6):811–6.

    Article  PubMed  Google Scholar 

  112. Wu L, Chung KC, Waljee JF, Momoch AO, Zhong L, Sears ED. A national study of the impact of initial debridement timing on outcomes for patients with deep sternal wound infection. Plast Reconstr Surg. 2016;137(2):414e–23e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kim JH, Chun SK, Yoon YC, Lakhotia D, Shon WY. Efficacy of debridement for early periprosthetic joint infection after hip arthroplasty. Hip Pelvis. 2014;26(4):227–34.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Song Z, Borgwardt L, Hoiby N, Wu H, Sorensen TS, Borgwardt A. Prosthesis infections after orthopedic joint replacement: the possible role of bacterial biofilms. Orthop Rev (Pavia). 2013;5:65–71.

    Article  Google Scholar 

  115. Darouiche RO. Treatment of infections associated with surgical implants. N Engl J Med. 2004;350:1422–9.

    Article  CAS  PubMed  Google Scholar 

  116. Koyonos L, Zmistowski B, Della Valle CJ, Parvizi J. Infection control rate of irrigation and debridement for periprosthetic join infection. Clin Orthop Relat Res. 2011;469:3043–8.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Diermengian C, Greenbaum J, Lotke PA, Boothe RE Jr, Lonner JH. Limited success with open debridement and retention of components in the treatment of acute Staphylococcus aureus infections after total knee arthroplasty. J Arthoplasty. 2003;18:22–6.

    Article  Google Scholar 

  118. Holmberg A, Thorhallsdottir VG, Robertsson O, W-Dahl A, Stefansdottir A. 75% success rate after open debridement, exchange of tibial insert, and antibiotics in knee prosthetic joint infections. Acta Orthop. 2015;86(4):457–62.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Osmon DR, Berbari EF, Berendt AR, Lew D, Zimmerli W, Steckelberg JM, Rao N, Hanssen A, Wilson WR. Diagnosis and management of prosthetic join infection: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis. 2013;56(1):1–25.

    Article  PubMed  Google Scholar 

  120. Mont MA, Waldman B, Banerjee C, Pacheco IH, Hungerfor DS. Multiple irrigation, debridement, and retention of components in infected total knee arthroplasty. J Arthroplast. 1997;12:426–33.

    Article  CAS  Google Scholar 

  121. Tsukayama DT, Estrada R, Gustilo RB. Infection after total hip arthroplasty: a study of the treatment of one hundred and six infections. J Bone Joint Surg Am. 1996;78:512–23.

    Article  CAS  PubMed  Google Scholar 

  122. Bradbury T, Fehring TK, Taunton M, Hanssen A, Azzam K, Parvizi J, Odum SM. The fate of acute methicillin-resistant Staphylococcus aureus periprosthetic knee infections treated by open debridement and retention of components. J Arthroplast. 2009;(Suppl 6):101–4.

    Google Scholar 

  123. Zmistowski BM, Manrique J, Patel R, Chen AF. Recurrent periprosthetic joint infection after irrigation and debridement with component retention is most often due to identical organisms. J Arthroplast. 2016;31:S148–51.

    Article  Google Scholar 

  124. Fehring TK, Odum SM, Berend KR, Jiranek WA, Parvizi J, Bozic KJ, Della Valle CJ, Gioe TJ. Failure of irrigation and debridement for early postoperative periprosthetic infection. Clin Orthop Relat Res. 2013;471(1):250–7.

    Article  PubMed  Google Scholar 

  125. Odum SM, Fehring TK, Lombardi AV, Zmistowski BM, Brown NM, Luna JT, Fehring KA, Hansen EN. Irrigation and debridement for periprosthetic infections: does the organism matter? J Arthroplast. 2011;26(Suppl 6):114–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas L. Helm MD FACS .

Editor information

Editors and Affiliations

Electronic Supplementary Material

Debridement of infected right ischial wound (AVI 1022634 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Smith, J.D., Sinha, I., Helm, D.L. (2018). Bacterial Control. In: Orgill, D. (eds) Interventional Treatment of Wounds. Springer, Cham. https://doi.org/10.1007/978-3-319-66990-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66990-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66989-2

  • Online ISBN: 978-3-319-66990-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics