Skip to main content

Matrices and Dermal Substitutes for Wound Treatment

  • Chapter
  • First Online:
Book cover Interventional Treatment of Wounds

Abstract

Advanced wound matrices are important adjuncts to standard wound care and surgery. An understanding of their mechanisms of action leads to rational device selection for difficult wounds. We discuss the various types of advanced biofunctional wound care products currently available for wound treatment and dermal reconstruction and their most commonly used applications. Prototypic products within the categories of dermal allografts, dermal regenerative scaffolds, cellular substrates, and decellularized ECM-based materials are discussed. Dermal regenerative scaffolds are useful for temporary wound coverage to quell inflammation and prevent desiccation and infection in acute burn injury and have been used increasingly for dermal reconstruction. Cellular products and decellularized tissue matrices contain bioactive compounds that augment or stimulate wound healing pathways known to be impaired in diabetic foot ulcers (DFUs) and venous leg ulcers (VLUs). Early DFU and VLU healing within the first 4 weeks of standard wound care can predict a need for adjunctive measures. Current data is culled from numerous randomized controlled trials and systematic reviews. Available evidence demonstrates that in the appropriate setting, biofunctional wound matrices increase rates of complete wound closure and accelerate the rate of healing.

Financial Disclosure Statement: R. Galiano is a consultant for the Musculoskeletal Transplant Foundation and for Smith & Nephew. He receives research funding through grants to Northwestern University Feinberg School of Medicine. The remaining authors have no relevant disclosures in relation to this article.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Sheehan P, Jones P, Giurini JM, Caselli A, Veves A. Percent change in wound area of diabetic foot ulcers over a 4-week period is a robust predictor of complete healing in a 12-week prospective trial. Plast Reconstr Surg. 2006;117(Suppl 7):239s–44s.

    Article  CAS  PubMed  Google Scholar 

  2. Phillips TJ, Machado F, Trout R, Porter J, Olin J, Falanga V. Prognostic indicators in venous ulcers. J Am Acad Dermatol. 2000;43(4):627–30.

    Article  CAS  PubMed  Google Scholar 

  3. Falanga V, Margolis D, Alvarez O, Auletta M, Maggiacomo F, Altman M, et al. Rapid healing of venous ulcers and lack of clinical rejection with an allogeneic cultured human skin equivalent. Human Skin Equivalent Investigators Group. Arch Dermatol. 1998;134(3):293–300.

    Article  CAS  PubMed  Google Scholar 

  4. Falanga V, Sabolinski M. A bilayered living skin construct (APLIGRAF) accelerates complete closure of hard-to-heal venous ulcers. Wound Repair Regen. 1999;7(4):201–7.

    Article  CAS  PubMed  Google Scholar 

  5. Sabolinski ML, Alvarez O, Auletta M, Mulder G, Parenteau NL. Cultured skin as a ‘smart material’ for healing wounds: experience in venous ulcers. Biomaterials. 1996;17(3):311.

    Article  CAS  PubMed  Google Scholar 

  6. Nyame TT, Chiang HA, Leavitt T, Ozambela M, Orgill DP. Tissue-engineered skin substitutes. Plast Reconstr Surg. 2015;136(6):1379–88.

    Article  CAS  PubMed  Google Scholar 

  7. Consensus I, editor. Acellular matrices for the treatment of wounds. An expert working group review. London: Wounds International; 2010.

    Google Scholar 

  8. Brigido SA. The use of an acellular dermal regenerative tissue matrix in the treatment of lower extremity wounds: a prospective 16-week pilot study. Int Wound J. 2006;3(3):181–7.

    Article  PubMed  Google Scholar 

  9. Zelen CM, Orgill DP, Serena T, Galiano R, Carter MJ, Didomenico LA, et al. A prospective, randomised, controlled, multicentre clinical trial examining healing rates, safety and cost to closure of an acellular reticular allogenic human dermis versus standard of care in the treatment of chronic diabetic foot ulcers. Int Wound J. 2017;14(2):307.

    Article  PubMed  Google Scholar 

  10. Raffetto JD, Mosti G, Santi M, Ligi D, Mannello F. Matrix metalloproteinase profiles in chronic venous ulcer wound fluid of inflammatory and granulating venous leg ulcers. J Vasc Surg Venous Lymphat Disord. 2015;3(1):119.

    Article  CAS  PubMed  Google Scholar 

  11. Yannas IV, Burke JF. Design of an artificial skin. I. Basic design principles. J Biomed Mater Res. 1980;14(1):65–81.

    Article  CAS  PubMed  Google Scholar 

  12. Yannas IV, Orgill DP, Burke JF. Template for skin regeneration. Plast Reconstr Surg. 2011;127(Suppl 1):60s–70s.

    Article  CAS  PubMed  Google Scholar 

  13. Snyder DL, Sullivan N, Schoelles KM. AHRQ technology assessments. Skin substitutes for treating chronic wounds. Rockville: Agency for Healthcare Research and Quality (US); 2012.

    Google Scholar 

  14. Moiemen NS, Staiano JJ, Ojeh NO, Thway Y, Frame JD. Reconstructive surgery with a dermal regeneration template: clinical and histologic study. Plast Reconstr Surg. 2001;108(1):93–103.

    Article  CAS  PubMed  Google Scholar 

  15. Komorowska-Timek E, Gabriel A, Bennett DC, Miles D, Garberoglio C, Cheng C, et al. Artificial dermis as an alternative for coverage of complex scalp defects following excision of malignant tumors. Plast Reconstr Surg. 2005;115(4):1010–7.

    Article  CAS  PubMed  Google Scholar 

  16. Taras JS, Sapienza A, Roach JB, Taras JP. Acellular dermal regeneration template for soft tissue reconstruction of the digits. J Hand Surg. 2010;35(3):415–21.

    Article  Google Scholar 

  17. Weigert R, Choughri H, Casoli V. Management of severe hand wounds with Integra(R) dermal regeneration template. J Hand Surg Eur Vol. 2011;36(3):185–93.

    Article  CAS  PubMed  Google Scholar 

  18. Valerio IL, Masters Z, Seavey JG, Balazs GC, Ipsen D, Tintle SM. Use of a dermal regeneration template wound dressing in the treatment of combat-related upper extremity soft tissue injuries. J Hand Surg. 2016;41(12):e453–e60.

    Article  Google Scholar 

  19. Helgeson MD, Potter BK, Evans KN, Shawen SB. Bioartificial dermal substitute: a preliminary report on its use for the management of complex combat-related soft tissue wounds. J Orthop Trauma. 2007;21(6):394–9.

    Article  PubMed  Google Scholar 

  20. Driver VR, Lavery LA, Reyzelman AM, Dutra TG, Dove CR, Kotsis SV, et al. A clinical trial of Integra template for diabetic foot ulcer treatment. Wound Repair Regen. 2015;23(6):891–900.

    Article  PubMed  Google Scholar 

  21. Dinh TL, Veves A. The efficacy of Apligraf in the treatment of diabetic foot ulcers. Plast Reconst Surg. 2006;117(7 Suppl):152S–7S. discussion 8S–9S

    Article  CAS  PubMed  Google Scholar 

  22. Griffiths M, Ojeh N, Livingstone R, Price R, Navsaria H. Survival of Apligraf in acute human wounds. Tissue Eng. 2004;10(7–8):1180–95.

    Article  CAS  PubMed  Google Scholar 

  23. Santema TBK, Poyck PPC, Ubbink DT. Systematic review and meta-analysis of skin substitutes in the treatment of diabetic foot ulcers: highlights of a Cochrane systematic review. Wound Repair Regen. 2016;24(4):737.

    Article  PubMed  Google Scholar 

  24. Veves A, Falanga V, Armstrong DG, Sabolinski ML. Graftskin, a human skin equivalent, is effective in the management of noninfected neuropathic diabetic foot ulcers: a prospective randomized multicenter clinical trial. Diabetes Care. 2001;24(2):290–5.

    Article  CAS  PubMed  Google Scholar 

  25. Koob TJ, Rennert R, Zabek N, Massee M, Lim JJ, Temenoff JS, et al. Biological properties of dehydrated human amnion/chorion composite graft: implications for chronic wound healing. Int Wound J. 2013;10(5):493–500.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Massee M, Chinn K, Lei J, Lim JJ, Young CS, Koob TJ. Dehydrated human amnion/chorion membrane regulates stem cell activity in vitro. J Biomed Mater Res B Appl Biomater. 2016;104(7):1495–503.

    Article  CAS  PubMed  Google Scholar 

  27. Didomenico LA, Orgill DP, Galiano RD, Serena TE, Carter MJ, Kaufman JP, et al. Aseptically processed placental membrane improves healing of diabetic foot ulcerations: prospective, randomized clinical trial. Plast Reconst Surg Glob Open. 2016;4(10):e1095.

    Article  Google Scholar 

  28. Zelen CM, Gould L, Serena TE, Carter MJ, Keller J, Li WW. A prospective, randomised, controlled, multi-centre comparative effectiveness study of healing using dehydrated human amnion/chorion membrane allograft, bioengineered skin substitute or standard of care for treatment of chronic lower extremity diabetic ulcers. Int Wound J. 2015;12(6):724–32.

    Article  PubMed  Google Scholar 

  29. Lerman OZ, Galiano RD, Armour M, Levine JP, Gurtner GC. Cellular dysfunction in the diabetic fibroblast: impairment in migration, vascular endothelial growth factor production, and response to hypoxia. Am J Pathol. 2003;162(1):303–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thangarajah H, Vial IN, Grogan RH, Yao D, Shi Y, Januszyk M, et al. HIF-1alpha dysfunction in diabetes. Cell Cycle. 2010;9(1):75–9.

    Article  CAS  PubMed  Google Scholar 

  31. Guo S, Dipietro LA. Factors affecting wound healing. J Dent Res. 2010;89(3):219–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Turner NJ, Badylak SF. The use of biologic scaffolds in the treatment of chronic nonhealing wounds. Adv Wound Care. 2015;4(8):490–500.

    Article  Google Scholar 

  33. McDevitt CA, Wildey GM, Cutrone RM. Transforming growth factor-beta1 in a sterilized tissue derived from the pig small intestine submucosa. J Biomed Mater Res A. 2003;67(2):637–40.

    Article  PubMed  Google Scholar 

  34. Hodde JP, Ernst DM, Hiles MC. An investigation of the long-term bioactivity of endogenous growth factor in OASIS wound matrix. J Wound Care. 2005;14(1):23–5.

    Article  CAS  PubMed  Google Scholar 

  35. Hodde JP, Record RD, Liang HA, Badylak SF. Vascular endothelial growth factor in porcine-derived extracellular matrix. Endothelium. 2001;8(1):11–24.

    Article  CAS  PubMed  Google Scholar 

  36. Mostow EN, Haraway GD, Dalsing M, Hodde JP, King D. Effectiveness of an extracellular matrix graft (OASIS wound matrix) in the treatment of chronic leg ulcers: a randomized clinical trial. J Vasc Surg. 2005;41(5):837–43.

    Article  PubMed  Google Scholar 

  37. Romanelli M, Dini V, Bertone MS. Randomized comparison of OASIS wound matrix versus moist wound dressing in the treatment of difficult-to-heal wounds of mixed arterial/venous etiology. Adv Skin Wound Care. 2010;23(1):34–8.

    Article  PubMed  Google Scholar 

  38. Janzekovic Z. A new concept in the early excision and immediate grafting of burns. J Trauma. 1970;10(12):1103–8.

    Article  CAS  PubMed  Google Scholar 

  39. Cole JK, Engrav LH, Heimbach DM, Gibran NS, Costa BA, Nakamura DY, et al. Early excision and grafting of face and neck burns in patients over 20 years. Plast Reconstr Surg. 2002;109(4):1266–73.

    Article  PubMed  Google Scholar 

  40. Mileski W, Borgstrom D, Lightfoot E, Rothlein R, Faanes R, Lipsky P, et al. Inhibition of leukocyte-endothelial adherence following thermal injury. J Surg Res. 1992;52(4):334–9.

    Article  CAS  PubMed  Google Scholar 

  41. Youn YK, LaLonde C, Demling R. The role of mediators in the response to thermal injury. World J Surg. 1992;16(1):30–6.

    Article  CAS  PubMed  Google Scholar 

  42. Singer AJ, Taira BR, Lin F, Lim T, Anderson R, McClain SA, et al. Curcumin reduces injury progression in a rat comb burn model. J Burn Care Res. 2011;32(1):135–42.

    Article  PubMed  Google Scholar 

  43. Broughton G, Zbar RI. Burns and burn reconstruction. Sel Read Plast Surg. 2005;10(7):1–25.

    Google Scholar 

  44. Ehrenreich M, Ruszczak Z. Tissue-engineered temporary wound coverings. Important options for the clinician. Acta Dermatovenerol Alp Panonica Adriat. 2006;15(1):5.

    Google Scholar 

  45. Noordenbos J, Hansbrough JF, Gutmacher H, Dore C, Hansbrough WB. Enteral nutritional support and wound excision and closure do not prevent postburn hypermetabolism as measured by continuous metabolic monitoring. J Trauma. 2000;49(4):667–71. discussion 71-2

    Article  CAS  PubMed  Google Scholar 

  46. Kumar RJ, Kimble RM, Boots R, Pegg SP. Treatment of partial-thickness burns: a prospective, randomized trial using Transcyte. ANZ J Surg. 2004;74(8):622–6.

    Article  PubMed  Google Scholar 

  47. Lukish JR, Eichelberger MR, Newman KD, Pao M, Nobuhara K, Keating M, et al. The use of a bioactive skin substitute decreases length of stay for pediatric burn patients. J Pediatr Surg. 2001;36(8):1118–21.

    Article  CAS  PubMed  Google Scholar 

  48. Jones I, Currie L, Martin R. A guide to biological skin substitutes. Br J Plast Surg. 2002;55(3):185–93.

    Article  CAS  PubMed  Google Scholar 

  49. Hansbrough J. Dermagraft-TC for partial-thickness burns: a clinical evaluation. J Burn Care Rehabil. 1997;18(1 Pt 2):S25–8.

    Article  CAS  PubMed  Google Scholar 

  50. Yazdanpanah L, Nasiri M, Adarvishi S. Literature review on the management of diabetic foot ulcer. World J Diabetes. 2015;6(1):37–53.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Barshes NR, Sigireddi M, Wrobel JS, Mahankali A, Robbins JM, Kougias P, et al. The system of care for the diabetic foot: objectives, outcomes, and opportunities. Diabet Foot Ankle. 2013;4. https://doi.org/10.3402/dfa.v4i0.21847.

  52. Reiber GE, Vileikyte L, Boyko EJ, del Aguila M, Smith DG, Lavery LA, et al. Causal pathways for incident lower-extremity ulcers in patients with diabetes from two settings. Diabetes Care. 1999;22(1):157–62.

    Article  CAS  PubMed  Google Scholar 

  53. Al-Mulla F, Leibovich SJ, Francis IM, Bitar MS. Impaired TGF-beta signaling and a defect in resolution of inflammation contribute to delayed wound healing in a female rat model of type 2 diabetes. Mol BioSyst. 2011;7(11):3006–20.

    Article  CAS  PubMed  Google Scholar 

  54. Martins VL, Caley M, O’Toole EA. Matrix metalloproteinases and epidermal wound repair. Cell Tissue Res. 2013;351(2):255–68.

    Article  CAS  PubMed  Google Scholar 

  55. Bento CF, Pereira P. Regulation of hypoxia-inducible factor 1 and the loss of the cellular response to hypoxia in diabetes. Diabetologia. 2011;54(8):1946–56.

    Article  CAS  PubMed  Google Scholar 

  56. Lan CC, Wu CS, Kuo HY, Huang SM, Chen GS. Hyperglycaemic conditions hamper keratinocyte locomotion via sequential inhibition of distinct pathways: new insights on poor wound closure in patients with diabetes. Br J Dermatol. 2009;160(6):1206–14.

    Article  CAS  PubMed  Google Scholar 

  57. Nolan CM, Beaty HN, Bagdade JD. Further characterization of the impaired bactericidal function of granulocytes in patients with poorly controlled diabetes. Diabetes. 1978;27(9):889–94.

    Article  CAS  PubMed  Google Scholar 

  58. Frykberg RG, Marston WA, Cardinal M. The incidence of lower-extremity amputation and bone resection in diabetic foot ulcer patients treated with a human fibroblast-derived dermal substitute. Adv Skin Wound Care. 2015;28(1):17–20.

    Article  PubMed  Google Scholar 

  59. Marston WA, Hanft J, Norwood P, Pollak R. The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcers: results of a prospective randomized trial. Diabetes Care. 2003;26(6):1701–5.

    Article  PubMed  Google Scholar 

  60. Zelen CM, Serena TE, Denoziere G, Fetterolf DE. A prospective randomised comparative parallel study of amniotic membrane wound graft in the management of diabetic foot ulcers. Int Wound J. 2013;10(5):502–7.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lavery LA, Fulmer J, Shebetka KA, Regulski M, Vayser D, Fried D, et al. The efficacy and safety of Grafix((R)) for the treatment of chronic diabetic foot ulcers: results of a multi-centre, controlled, randomised, blinded, clinical trial. Int Wound J. 2014;11(5):554–60.

    Article  PubMed  Google Scholar 

  62. Cazzell SM, Lange DL, Dickerson JE Jr, Slade HB. The management of diabetic foot ulcers with porcine small intestine submucosa tri-layer matrix: a randomized controlled trial. Adv Wound Care. 2015;4(12):711–8.

    Article  Google Scholar 

  63. Reyzelman A, Crews RT, Moore JC, Moore L, Mukker JS, Offutt S, et al. Clinical effectiveness of an acellular dermal regenerative tissue matrix compared to standard wound management in healing diabetic foot ulcers: a prospective, randomised, multicentre study. Int Wound J. 2009;6(3):196–208.

    Article  PubMed  Google Scholar 

  64. Zelen CM, Serena TE, Gould L, Le L, Carter MJ, Keller J, et al. Treatment of chronic diabetic lower extremity ulcers with advanced therapies: a prospective, randomised, controlled, multi-centre comparative study examining clinical efficacy and cost. Int Wound J. 2016;13(2):272–82.

    Article  PubMed  Google Scholar 

  65. Kirsner RS, Sabolinski ML, Parsons NB, Skornicki M, Marston WA. Comparative effectiveness of a bioengineered living cellular construct vs. a dehydrated human amniotic membrane allograft for the treatment of diabetic foot ulcers in a real world setting. Wound Repair and Regen. 2015;23(5):737–44.

    Article  Google Scholar 

  66. Didomenico L, Landsman AR, Emch KJ, Landsman A. A prospective comparison of diabetic foot ulcers treated with either a cryopreserved skin allograft or a bioengineered skin substitute. Wounds. 2011;23(7):184.

    PubMed  Google Scholar 

  67. Niezgoda JA, Van Gils CC, Frykberg RG, Hodde JP. Randomized clinical trial comparing OASIS wound matrix to Regranex Gel for diabetic ulcers. (Original investigation) (Author abstract). Adv Skin Wound Care. 2005;18(5):258.

    Google Scholar 

  68. Sanders L, Landsman AS, Landsman A, Keller N, Cook J, Cook E, et al. A prospective, multicenter, randomized, controlled clinical trial comparing a bioengineered skin substitute to a human skin allograft. Ostomy Wound Manage. 2014;60(9):26.

    PubMed  Google Scholar 

  69. Landsman A, Roukis TS, Defronzo DJ, Agnew P, Petranto RD, Surprenant M. Living cells or collagen matrix: which is more beneficial in the treatment of diabetic foot ulcers? Wounds. 2008;20(5):111.

    PubMed  Google Scholar 

  70. Gould LJ, Dosi G, Couch K, Gibbons GW, Howell RS, Brem H, et al. Modalities to treat venous ulcers: compression, surgery, and bioengineered tissue. Plast Reconstr Surg. 2016;138(Suppl 3):199s–208s.

    Article  CAS  PubMed  Google Scholar 

  71. Kirsner R, Falanga V, Eaglstein W. The biology of skin-grafts – skin-grafts as pharmacological agents. Arch Dermatol. 1993;129(4):481.

    Article  CAS  PubMed  Google Scholar 

  72. Serena TE, Carter MJ, Le LT, Sabo MJ, DiMarco DT. A multicenter, randomized, controlled clinical trial evaluating the use of dehydrated human amnion/chorion membrane allografts and multilayer compression therapy vs. multilayer compression therapy alone in the treatment of venous leg ulcers. Wound Repair Regen. 2014;22(6):688–93.

    Article  PubMed  Google Scholar 

  73. Kelechi TJ, Mueller M, Hankin CS, Bronstone A, Samies J, Bonham PA. A randomized, investigator-blinded, controlled pilot study to evaluate the safety and efficacy of a poly-N-acetyl glucosamine-derived membrane material in patients with venous leg ulcers. J Am Acad Dermatol. 2012;66(6):e209–15.

    Article  CAS  PubMed  Google Scholar 

  74. Climov M, Bayer LR, Moscoso AV, Matsumine H, Orgill DP. The role of dermal matrices in treating inflammatory and diabetic wounds. Plast Reconstr Surg. 2016;138(Suppl 3):148s–57s.

    Article  CAS  PubMed  Google Scholar 

  75. Gilmour A, Shah A, Telfer JR. Use of Integra ® dermal regeneration template in excision and reconstruction of pre-tibial necrobiosis lipoidica: a case report. Br J Diabetes Vasc Dis. 2012;12(5):261.

    Article  Google Scholar 

  76. Steinberg J, Beusterien K, Plante K, Nordin J, Chaikoff E, Arcona S, et al. A cost analysis of a living skin equivalent in the treatment of diabetic foot ulcers. Wounds. 2002;14(4):142.

    Google Scholar 

  77. Redekop WK, McDonnell J, Verboom P, Lovas K, Kalo Z. The cost effectiveness of Apligraf treatment of diabetic foot ulcers. PharmacoEconomics. 2003;21(16):1171–83.

    Article  PubMed  Google Scholar 

  78. Sibbald RG, Torrance GW, Walker V, Attard C, MacNeil P. Cost-effectiveness of Apligraf in the treatment of venous leg ulcers. Ostomy Wound Manage. 2001;47(8):36–46.

    CAS  PubMed  Google Scholar 

  79. Langer A, Rogowski W. Systematic review of economic evaluations of human cell-derived wound care products for the treatment of venous leg and diabetic foot ulcers. BMC Health Serv Res. 2009;9:115.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Webber MJ, Tongers J, Newcomb CJ, Marquardt KT, Bauersachs J, Losordo DW, et al. Supramolecular nanostructures that mimic VEGF as a strategy for ischemic tissue repair. Proc Natl Acad Sci U S A. 2011;108(33):13438–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lee W, Debasitis JC, Lee VK, Lee JH, Fischer K, Edminster K, et al. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials. 2009;30(8):1587–95.

    Article  CAS  PubMed  Google Scholar 

  82. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773–85.

    Article  CAS  PubMed  Google Scholar 

  83. Valerio IL, Hammer DA, Rendon JL, Latham KP, Fleming ME. A case report of the first nonburn-related military trauma victim treated with spray skin regenerative therapy in combination with a dermal regenerate template. Plast Reconstr Surg Glob Open. 2016;4(12):e1174.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Galiano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jordan, S.W., Turin, S.Y., Zielinski, E.R., Galiano, R.D. (2018). Matrices and Dermal Substitutes for Wound Treatment. In: Orgill, D. (eds) Interventional Treatment of Wounds. Springer, Cham. https://doi.org/10.1007/978-3-319-66990-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66990-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66989-2

  • Online ISBN: 978-3-319-66990-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics