Parallel Coordinates Visualization Tool on the Air Pollution Data for Northern Malaysia

  • J. Joshua ThomasEmail author
  • Raaj Lokanathan
  • Justtina Anantha Jothi
Part of the Studies in Computational Intelligence book series (SCI, volume 741)


The paper explains the contents of particles on the air pollution data through parallel coordinate visualization. This approach involves graph-plotting algorithms with parallel coordinates that explore the raw data with interactive filtering that facilitates the insight of the materials that mixed and harm the population in northern Malaysia. By presenting, the parallel coordinates method to visualize the parameter space that influence and visually identify the hazardous, moderate, unhealthy gaseous content in the air. The visual representation presents the large amount of data into single visualization. The paper discussed the performance of the chosen visualization method and tested with northern region datasets.


Parallel coordinates Visual representation Clustering data 


  1. 1.
    Becker, R., & Cleveland, W. (1987). Brushing scatter plots. Technometrics, 29(2), 127.
  2. 2.
    Cebi, S., Kahraman, C., & Kaya, I. (2011). Soft computing and computational intelligent techniques in the evaluation of emerging energy technologies. Innovation in Power, Control, and Optimization: Emerging Energy Technologies: Emerging Energy Technologies, 164.Google Scholar
  3. 3.
    Chang, E., Li, T., Yi, X., Li, M., Li, R., Zheng, Y., & Shan, Z. (2015). Forecasting fine-grained air quality based on big data. In KDD’15. China: ACM—Association for Computing Machinery.Google Scholar
  4. 4.
    Dhillon, I. S., Modha, D. S., & Spangler, W. S. (2002). Class visualization of high-dimensional data with applications. Computational Statistics & Data Analysis, 41(1), 59–90.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Garg, H., Rani, M., & Sharma, S. P. (2013). Predicting uncertain behavior and performance analysis of the pulping system in a paper industry using PSO and Fuzzy methodology. Handbook of Research on Novel Soft Computing Intelligent Algorithms: Theory and Practical Applications (pp. 414–449).Google Scholar
  6. 6.
    Liao, Z., Peng, Y., Li, Y., Liang, X., & Zhao, Y. (2014). A web-based visual analytics system for air quality monitoring data. In 2014 22nd international conference on geoinformatics (pp. 1–6). Changsha: IEEE.Google Scholar
  7. 7.
    Nambiar, P. (2015). Penang air quality at unhealthy levels, NST Online. Retrieved May 30, 2016, from
  8. 8.
    Malaysia Air Pollutant Index (n.d.). Retrieved May 30, 2016, from
  9. 9.
    Haze: Six areas in Perlis, Kedah and Penang record very unhealthy air quality (2015). Retrieved May 30, 2016, from
  10. 10.
    Hauser, H., Ledermann, F., & Doleisch, H. (2002). Angular brushing of extended parallel coordinates (p. 127). IEEE Computer Society.Google Scholar
  11. 11.
    Inselberg, A. (1985). The plane with parallel coordinates. The Visual Computer, 1(2), 69–91.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Jeet, K., & Dhir, R. (2016). Software module clustering using bio-inspired algorithms. Handbook of Research on Modern Optimization Algorithms and Applications in Engineering and Economics, 445.Google Scholar
  13. 13.
    Qu, H., Chan, W., Xu, A., Chung, K., Lau, K., & Guo, P. (2007). Visual analysis of the Air pollution problem in Hong Kong. IEEE Transactions on Visualization and Computer Graphics, 13(6), 1408–1415.
  14. 14.
    Steinparz, S., Aßmair, R., Bauer, A., & Feiner, J. (n.d.). InfoVis—Parallel coordinates. Graz University of Technology.Google Scholar
  15. 15.
    Tourist arrivals to Malaysia affected by haze, says deputy Tourism minister (2015). Retrieved May 30, 2016, from
  16. 16.
    Thomas, J. J., Khader, A. T., & Belaton, B. (2011). A parallel coordinates visualization for the uncapaciated examination timetabling problem. In Visual informatics: sustaining research and innovations (pp. 87–98). Heidelberg: Springer.Google Scholar
  17. 17.
    Thomas, J., Khader, A., Belaton, B., & Ken, C. (2012). Integrated problem solving steering framework on clash reconciliation strategies for university examination timetabling problem (Vol. 7666, pp. 297–304). Berlin: Springer. Retrieved September 3, 2016, from
  18. 18.
    Vora, M., & Mirnalinee, T. T. (2017). From optimization to clustering: A swarm intelligence approach. In Nature-Inspired computing: concepts, methodologies, tools, and applications (pp. 1519–1544). IGI Global.Google Scholar
  19. 19.
    Won Park, J., Ho Yun, C., Sun Jung, H., & Woo LEE, Y. (2011). Visualization of Urban Air pollution with cloud computing. In 2011 IEEE world congress on services (pp. 578–583).
  20. 20.
    Wang, B., & Dong, A. (2012). Online clustering and outlier detection. Data Mining: Concepts, Methodologies, Tools, and Applications: Concepts, Methodologies, Tools, and Applications, 1, 142.Google Scholar
  21. 21.
    Zhang, J., Wang, W., Huang, M., Lu, L., & Meng, Z. (2014). Big Data density analytics using parallel coordinate visualization. International conference on computational science and engineering, p. 1115.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • J. Joshua Thomas
    • 1
    Email author
  • Raaj Lokanathan
    • 1
  • Justtina Anantha Jothi
    • 1
  1. 1.Department of Computing, School of Engineering, Computing and Built EnvironmentKDU Penang University CollegePenangMalaysia

Personalised recommendations