Advertisement

Emulation of a Photovoltaic Module Using a Wiener-Type Nonlinear Impedance Controller for Tracking of the Operation Point

  • Oswaldo López-SantosEmail author
  • María C. Merchán Riveros
  • María C. Salas Castaño
  • William A. Londoño
  • Germain Garcia
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 742)

Abstract

This paper proposes a control method to provide the function of Solar Panel Emulation (SPE) to a low-cost programmable DC source. The proposed control operates with base on the error between measurement of the conductance connected at the output of the SPE and the conductance obtained evaluating the I-V characteristic of the panel model. The principle of operation is that the output of the controller modifies the value of the voltage introduced into the W-Lambert function to obtain the corresponding current enforcing the regulation of the measured conductance. In this paper, a controller composed by a nonlinear static gain and a conventional PI controller is proposed. The controller architecture configures a Wiener system structure which ensures the stable convergence of the real SPE variables to the values defined by the model. Simulation results are presented evaluating the dynamic performance of the system for irradiance and load variations. SPE method is implemented using simple measurement and conditioning circuits interacting with an application developed in LabVIEW through a data acquisition card. This implementation provides a complete solution highly applicable in research and industrial development.

Keywords

Solar panel emulator Photovoltaic modules Non-linear control Impedance controller Wiener-type structure W-Lambert function LabVIEW Graphic user interface 

Notes

Acknowledgements

This research is being developed with the partial support of the Gobernación del Tolima under Convenio de cooperación 1026-2013. The results presented in this paper have been obtained with the assistance of students from the Research Hotbed on Power Electronic Conversion (SICEP), Research Group D+TEC, Universidad de Ibagué, Ibagué-Colombia.

References

  1. 1.
    Kulkarni, S.S., Thean, C.Y., Kong, A.W.: A novel PC based solar electric panel simulator. In: Proceedings of the Fifth International Conference on Power Electronics and Drive Systems (PEDS), pp. 848–852 (2003)Google Scholar
  2. 2.
    Thean, C.Y., Junbo, J., Kong, A.W.: An embedded microchip system design for programmable solar panel simulator. In: Proceedings of the International Conference on Power Electronics and Drives Systems (PEDS), pp. 1606–1610 (2005)Google Scholar
  3. 3.
    Lu, D.D., Nguyen, Q.N.: A photovoltaic panel emulator using a buck-boost DC/DC converter and a low cost micro-controller. Sol. Energy 86(5), 1477–1484 (2012)CrossRefGoogle Scholar
  4. 4.
    Singh, A., Hota, A.R., Patra, A.: Design and implementation of a programmable solar photovoltaic simulator. In: Proceedings of the International Conference on Power, Control and Embedded Systems (ICPCES), pp. 1–5 (2010)Google Scholar
  5. 5.
    Espinar, C.M.: Diseño e implementación de un emulador fotovoltaico para el testeo de inversores en un entorno de programación Simulink y desarrollo de una interfaz HMI. Doctoral Dissertation, Universidad Politécnica de Catalunya (2011)Google Scholar
  6. 6.
    Dolan, D.S., Durago, J., Taufik, T.: Development of a photovoltaic panel emulator using Labview. In: Proceedings of the 37th IEEE Photovoltaic Specialists Conference (PVSC), pp. 1795–1800 (2011)Google Scholar
  7. 7.
    Bhise, K., Pragallapati, N., Thale, S., Agarwal, V.: Labview based emulation of photovoltaic array to study maximum power point tracking algorithms. In: Proceedings of the 38th IEEE Photovoltaic Specialists Conference (PVSC), pp. 2961–2966 (2012)Google Scholar
  8. 8.
    Kadri, R., Andrei, H., Gaubert, J.-P., Ivanovici, T., Champenois, G., Andrei, P.: Modeling of the photovoltaic cell circuit parameters for optimum connection model and real-time emulator with partial shadow conditions. Energy 42(1), 57–67 (2012)CrossRefGoogle Scholar
  9. 9.
    Jiang, T., Putrus, G., McDonald, S., Conti, M., Li, B., Johnston, D.: Generic photovoltaic system emulator based on lambert omega function. In: Proceedings of the 46th International Universities’ Power Engineering Conference (UPEC), pp. 1–5 (2011)Google Scholar
  10. 10.
    Azharuddin, M., Babu, T.S., Bilakanti, N., Rajasekar, N.: A nearly accurate solar photovoltaic emulator using a dSPACE controller for real-time control. Electr. Power Compon. Syst. 44(7), 774–782 (2016)CrossRefGoogle Scholar
  11. 11.
    Tapfumanei, T.B., Mouton, H.D.T., Rix, A.J.: Solar array emulator. In: Proceedings of the 4th Southern African Solar Energy Conference (SASEC), pp. 1–8 (2016)Google Scholar
  12. 12.
    Barrera, L.M., Osorio, R.A., Trujillo, C.L.: Design and implementation of electronic equipment that emulates photovoltaic panels. In: Proceedings of the IEEE 42nd Photovoltaic Specialist Conference (PVSC), pp. 1–5 (2015)Google Scholar
  13. 13.
    Gonzalez-Llorente, J., Rambal-Vecino, A., Garcia-Rodriguez, L.A., Balda, J.C., Ortiz-Rivera, E.I.: Simple and efficient low power photovoltaic emulator for evaluation of power conditioning systems. In: Proceedings of the IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, pp. 3712–3716 (2016)Google Scholar
  14. 14.
    Orozco-Gutierrez, M.L., Ramirez-Scarpetta, J.M., Spagnuolo, G., Ramos-Paja, C.A.: A method for simulating large PV arrays that include reverse biased cells. Appl. Energy 123, 157–167 (2014)CrossRefGoogle Scholar
  15. 15.
    Tornez-Xavier, G.M., Gomez-Castañeda, F., Moreno-Cadenas, J.A., Flores-Nava, L.M.: FGPA development and implementation of a solar panel emulator. In: Proceedings of the 10th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), pp. 467–472 (2013)Google Scholar
  16. 16.
    Ardila-Franco, C.E., Soto-Gómez, J.A., Arango-Zuluaga, E.I., Ramos-Paja, C.A., Serna-Garcés, S.I.: Desarrollo de un Sistema Emulador de Arreglos Fotovoltaicos en Tiempo Real Considerando Variaciones en las Condiciones Climáticas. TecnoLógicas, 151–163 (2013) Google Scholar
  17. 17.
    Petrone, G., Spagnuolo, G., Vitelli, M.: Analytical model of mismatched photovoltaic fields by means of Lambert W-function. Sol. Energy Mater. Sol. Cells 91(18), 1652–1657 (2007)CrossRefGoogle Scholar
  18. 18.
    Weisstein, E.W.: Lambert W-Function. [En línea]. Disponible en. http://mathworld.wolfram.com/LambertW-Function.html. Accessed 17 Feb 2017
  19. 19.
    Lopez-Santos, O., Arango-Buitrago, J.S., Gonzalez-Morales, D.F.: On-line visualization and long-term monitoring of a single-phase photovoltaic generator using SCADA. Commun. Comput. Inf. Sci. (CCIS) 657, 295–307 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Oswaldo López-Santos
    • 1
    Email author
  • María C. Merchán Riveros
    • 1
  • María C. Salas Castaño
    • 1
  • William A. Londoño
    • 1
  • Germain Garcia
    • 2
  1. 1.Universidad de IbaguéIbaguéColombia
  2. 2.LAAS-CNRSUniversité de ToulouseToulouseFrance

Personalised recommendations