Analysis of Power Quality for Connections in the Same Circuit of Metal-Halide, LED and Compact Fluorescent Lamps

  • Enrique Jácome
  • Helbert EspitiaEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 742)


This paper shows an estimate of some power quality indices for three different lighting technologies connected in the same electrical circuit. The devices considered are compact fluorescent lamp with electronic ballast, high intensity discharge metal halide lamp, and LED lamp; including nonlinear models of lamps for power quality analysis. These models are obtained by parameter identification, using optimization from the actual measurement of the line current of each lamp. Power analysis are based on IEEE 1459-2010 standard.


Compact-fluorescent Lamps LED Metal-halide Power-quality 


  1. 1.
    IEEE Standard 519–1992: IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems April 1993Google Scholar
  2. 2.
    IESNA Illuminating Engineering Society of North America: Lighting Handbook. Reference and Application, 9th edn. (1997)Google Scholar
  3. 3.
    Ministerio de Minas y Energía: Reglamento Técnico de Instalaciones Eléctricas - RETIE, Colombia (2007)Google Scholar
  4. 4.
    Codensa, S.A.: Normas de construcción y especificaciones técnicas, Bogotá (2011)Google Scholar
  5. 5.
    Watson, N., Scott, T., Hirsch, S.: Implications for distribution networks of high penetration of compact fluorescent lamps. IEEE Trans. Power Deliv. 24(3), 1521–1528 (2009)CrossRefGoogle Scholar
  6. 6.
    Abdel, A.F.: Studying the impact of different lighting loads on both harmonics and power factor. In: 42nd International Universities Power Engineering Conference UPEC (2007)Google Scholar
  7. 7.
    Uddin, S., Shareef, H., Krause, O., Mohamed, A., Hannan, M., Islam, N.: Impact of large-scale installation of LED lamps in a distribution system. Turk. J. Electr. Eng. Comput. Sci. 23, 1769–1780 (2015)CrossRefGoogle Scholar
  8. 8.
    Blanco, A.M.: Efecto sobre los circuitos de distribución secundarios debido al uso intensivo de Bombillas Fluorescentes Compactas y LEDs(LightEmittingDiodes). M.Sc. Thesis, Department of Electrical Engineering, National University of Colombia, Bogotá (2010)Google Scholar
  9. 9.
    Pavas, A., Blanco, A., Parra, E.: Applying FBD-power theory to analysing effective lighting devices impact on power quality and electric grid efficiency. Ing. Investig. J. 31(2), 110–117 (2011)Google Scholar
  10. 10.
    Lin, S., Huang, N., Zhu, M.: The study of the power quality emission characteristics of different types of lamps and their impacts on distribution systems. In: IEEE 11th Conference on Industrial Electronics and Applications ICIEA (2016)Google Scholar
  11. 11.
    Molina, J., Mesas, J.J., Mesbahi, N., Sainz, L.: LED lamp modelling for harmonic studies in distribution systems. IET Gener. Transm. Distrib. 11(4), 1063–1071 (2017)CrossRefGoogle Scholar
  12. 12.
    Tang, Y., Chen, Q., Ju, P., Jin, Y., Shen, F., Qi, B., Xu, Z.: Research on load characteristics of energy-saving lamp and LED lamp. In: IEEE International Conference on Power System Technology POWERCON (2016)Google Scholar
  13. 13.
    Braga, D., Jota, P.: Prediction of total harmonic distortion based on harmonic modeling of nonlinear loads using measured data for parameter estimation. In: 17th International Conference on Harmonics and Quality of Power ICHQP (2016)Google Scholar
  14. 14.
    Jácome, E., Pavas, A., Espitia, H.: Power quality analysis of discharge with metal-halide reactor ballast. In: XX Congreso Internacional de Ingeniería Eléctrica, Electrónica, de Computación y Ramas Afines INTERCON, pp. 75–78 (2013)Google Scholar
  15. 15.
    IEEE Industry Applications Society/Power Engineering Society IEEE Recommended: Definitions for the measurement of electric power quantities under sinusoidal, nonsinusoidal, balanced or unbalanced conditions Standard 1459 (2010)Google Scholar
  16. 16.
    Jácome, E., Pavas, A., Espitia, H.: Power quality analysis for different connections of metal-halide lamps on the same circuit. In: XXI Congreso Internacional de Ingeniería Electrónica, Eléctrica y Computación INTERCON (2014)Google Scholar
  17. 17.
    Lu, S., Cheng, Z., Wu, B., Sotudeh, R.: Modeling of neon tube powered by high frequency converters. In: IEEE 28th Annual Conference of the Industrial Electronics Society IECON (2002)Google Scholar
  18. 18.
    Illuminating Engineering Society of North America IESNA: Approved method for the electrical and photometric measurements of single-ended Compact Fluorescent Lamps. Standard IESNA LM-66-00 (2000)Google Scholar
  19. 19.
    Larsson, E.O.A., Lundmark, C.M., Bollen, M.H.J.: Measurement of current taken by fluorescent lights in the frequency range 2–150 kHz. In: IEEE Power Engineering Society General Meeting (2006)Google Scholar
  20. 20.
    Schinkelshoek, M., Watson, N., Heffernan, B.: The characteristics of CFLs; beyond the harmonics. In: 20th Australasian Universities Power Engineering Conference AUPEC (2010)Google Scholar
  21. 21.
    Lobo, E., Pavas, A., Espitia, H., Parameter identification and power quality analysis for compact fluorescent lamp. In: International Symposium on Power Quality, SICEL, vol. 7, p. 5 (2013)Google Scholar
  22. 22.
    Venkataraman, P.: Applied Optimization with MATLAB Programming, 2nd edn. Wiley, Hoboken (2009)Google Scholar
  23. 23.
    Quarteroni, A., Saleri, F., Gervasio, P.: Scientific Computing with MATLAB and Octave. Texts in Computational Science and Engineering. Springer, Heidelberg (2014)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Universidad Distrital Francisco José de CaldasBogotáColombia

Personalised recommendations