Abstract
Diamond-like carbon (DLC) thin films have been investigated for a wide range of applications due to their excellent electrical and mechanical properties. In the last decade, several researches and development activities have been conducted on the use of these thin films as piezoresistors in MEMS pressure sensors. This paper provides an overview on the design of a piezoresistive pressure sensor constituted of a silicon circular diaphragm with four DLC thin-film piezoresistors arranged in the Wheatstone bridge configuration. The sensor was designed from analytical formulas found in the literature.
Keywords
- Piezoresistive pressure sensor
- Diamond-like carbon (DLC)
- Design
- Analytical solution
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Fraga, M.A., Pessoa, R.S., Massi, M., Maciel, H.S.: Silicon carbide as base material for MEMS sensors of aerospace use: an overview. Matéria 19(3), 274–290 (2014)
Casady, J.B., Johnson, R.W.: Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review. Solid-State Electron. 39(10), 1409–1422 (1996)
Auciello, O., Pacheco, S., Sumant, A.V., Gudeman, C., Sampath, S., Datta, A., Carpick, R.W., Adiga, V.P., Zurcher, P., Ma, Z., Yuan, H.-C., Carlisle, J.A., Kabius, B., Hiller, J., Srinivasan, S.: Are diamonds a MEMS’ best friend? IEEE Microw. Mag. 8(6), 61–75 (2007)
Fraga, M.A., Furlan, H., Pessoa, R.S., Massi, M.: Wide bandgap semiconductor thin films for piezoelectric and piezoresistive MEMS sensors applied at high temperatures: an overview. Microsyst. Technol. 20, 9–21 (2014)
Vetter, J.: 60 years of DLC coatings: historical highlights and technical review of cathodic arc processes to synthesize various DLC types, and their evolution for industrial applications. Surf. Coat. Technol. 257, 213–240 (2014)
Robertson, J.: Diamond-like amorphous carbon. J. Mater. Sci. Eng. R. 37, 129–281 (2002)
Silva, S.R.E., Carey, J.D.: Amorphous carbon thin films. In: Nalwa, H.S. (ed.) Handbook of Thin Films, vol. 4, pp 403–506. Elsevier Inc., Burlington (2002)
Fraga, M.A., Bosi, M., Negri, M.: Silicon Carbide in microsystem technology – thin film versus bulk material. In: Saddow, S.E., La Via, F. (eds.) Advanced Silicon Carbide Devices and Processing, pp. 1–30. Intech (2015)
Aisenberg, S., Chabot, R.: Ion-beam deposition of thin films of diamond like carbon. J. Appl. Phys. 42(7), 2953–2958 (1971)
Takeno, T., Miki, H., Sugawara, T., Hoshi, Y., Takagi, T.: A DLC/W-DLC multilayered structure for strain sensing applications. Diam. Relat. Mater. 17(4–5), 713–716 (2008)
Petersen, M., Heckmann, U., Bandorf, R., Gwozdz, V., Schnabel, S., Bräuer, G., Klages, C.P.: Me-DLC films as material for highly sensitive temperature compensated strain gauges. Diam. Relat. Mater. 20(5–6), 814–818 (2011)
Leal, G., Fraga, M.A., Rasia, L.A., Massi, M.: Impact of high N2 flow ratio on the chemical and morphological characteristics of sputtered N-DLC films. Surf. Interface Anal. 49(2), 99–106 (2017)
Robertson, J.: Diamond-like carbon films, properties and applications. In: Sarin, V.K. (ed.) Comprehensive Hard Materials, vol. 3, pp. 101–139. Elsevier Inc., Burlington (2014)
Freund, L.B., Suresh, S.: Thin Film Materials: Stress, Defect Formation and Surface Evolution, pp. 1–820. Cambridge University Press, Cambridge (2003)
Martin, P.M.: Handbook of Deposition Technologies for Films and Coatings Third Edition. Science Applications and Technology. Elsevier Inc., Burlington (2010)
Kenny, T.: Strain gages. In: Wilson, J.S. (eds.) Sensor Technology Handbook, Elsevier Inc., Burlington, pp. 501–529 (2005)
Russo, G.P.: Aerodynamic Measurement: From Physical Principles to Turnkey Instrumentation, pp. 1–24. Woodhead Publishing, Elsevier Inc., Burlington (2011)
Luethje, H., Brand, J.: German Patent DE 199 54 164 A1. Sensor zur Zustandsbestimmung von Kenngroessen an mechanischen Komponenten (1999)
Peiner, E., Tibrewala, A., Bandorf, R., Biehl, S., Lüthje, H., Doering, L.: Micro force sensor with piezoresistive amorphous carbon strain gauge. Sens. Actuators A: Phys. 130–131, 75–82 (2006)
Tibrewala, A., Peiner, E., Bandorf, R., Biehl, S., Lüthje, H.: Transport and optical properties of amorphous carbon and hydrogenated amorphous carbon films. Appl. Surf. Sci. 252(15), 5387–5390 (2006)
Fraga, M.A., Furlan, H., Pessoa, R.S., Rasia, L.A., Mateus, C.F.R.: Studies on SiC, DLC and TiO2 thin films as piezoresistive sensor materials for high temperature application. Microsyst. Technol. 18, 1027–1033 (2012)
Kanda, Y., Yasukawa, A.: Optimum design considerations for silicon piezoresistive pressure sensors. Sens. Actuators A 62, 539–542 (1997)
Geremias, M., Moreira, R.C., Rasia, L.A., Moi, A.: Mathematical modeling of piezoresistive elements. J. Phys: Conf. Ser. 648, 012012 (2015)
Acknowledgments
São Paulo Research Foundation – FAPESP (processes number 14/18139-8 and 13/17045-7) and by CNPq (processes number 442133/2014-6 and 305153/2015-3).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Rasia, L.A., Leal, G., Koberstein, L.L., Furlan, H., Massi, M., Fraga, M.A. (2017). Design and Analytical Studies of a DLC Thin-Film Piezoresistive Pressure Microsensor. In: Figueroa-García, J., López-Santana, E., Villa-Ramírez, J., Ferro-Escobar, R. (eds) Applied Computer Sciences in Engineering. WEA 2017. Communications in Computer and Information Science, vol 742. Springer, Cham. https://doi.org/10.1007/978-3-319-66963-2_39
Download citation
DOI: https://doi.org/10.1007/978-3-319-66963-2_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-66962-5
Online ISBN: 978-3-319-66963-2
eBook Packages: Computer ScienceComputer Science (R0)