Skip to main content

Design and Analytical Studies of a DLC Thin-Film Piezoresistive Pressure Microsensor

Part of the Communications in Computer and Information Science book series (CCIS,volume 742)

Abstract

Diamond-like carbon (DLC) thin films have been investigated for a wide range of applications due to their excellent electrical and mechanical properties. In the last decade, several researches and development activities have been conducted on the use of these thin films as piezoresistors in MEMS pressure sensors. This paper provides an overview on the design of a piezoresistive pressure sensor constituted of a silicon circular diaphragm with four DLC thin-film piezoresistors arranged in the Wheatstone bridge configuration. The sensor was designed from analytical formulas found in the literature.

Keywords

  • Piezoresistive pressure sensor
  • Diamond-like carbon (DLC)
  • Design
  • Analytical solution

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fraga, M.A., Pessoa, R.S., Massi, M., Maciel, H.S.: Silicon carbide as base material for MEMS sensors of aerospace use: an overview. Matéria 19(3), 274–290 (2014)

    Google Scholar 

  2. Casady, J.B., Johnson, R.W.: Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review. Solid-State Electron. 39(10), 1409–1422 (1996)

    CrossRef  Google Scholar 

  3. Auciello, O., Pacheco, S., Sumant, A.V., Gudeman, C., Sampath, S., Datta, A., Carpick, R.W., Adiga, V.P., Zurcher, P., Ma, Z., Yuan, H.-C., Carlisle, J.A., Kabius, B., Hiller, J., Srinivasan, S.: Are diamonds a MEMS’ best friend? IEEE Microw. Mag. 8(6), 61–75 (2007)

    CrossRef  Google Scholar 

  4. Fraga, M.A., Furlan, H., Pessoa, R.S., Massi, M.: Wide bandgap semiconductor thin films for piezoelectric and piezoresistive MEMS sensors applied at high temperatures: an overview. Microsyst. Technol. 20, 9–21 (2014)

    CrossRef  Google Scholar 

  5. Vetter, J.: 60 years of DLC coatings: historical highlights and technical review of cathodic arc processes to synthesize various DLC types, and their evolution for industrial applications. Surf. Coat. Technol. 257, 213–240 (2014)

    CrossRef  Google Scholar 

  6. Robertson, J.: Diamond-like amorphous carbon. J. Mater. Sci. Eng. R. 37, 129–281 (2002)

    CrossRef  Google Scholar 

  7. Silva, S.R.E., Carey, J.D.: Amorphous carbon thin films. In: Nalwa, H.S. (ed.) Handbook of Thin Films, vol. 4, pp 403–506. Elsevier Inc., Burlington (2002)

    Google Scholar 

  8. Fraga, M.A., Bosi, M., Negri, M.: Silicon Carbide in microsystem technology – thin film versus bulk material. In: Saddow, S.E., La Via, F. (eds.) Advanced Silicon Carbide Devices and Processing, pp. 1–30. Intech (2015)

    Google Scholar 

  9. Aisenberg, S., Chabot, R.: Ion-beam deposition of thin films of diamond like carbon. J. Appl. Phys. 42(7), 2953–2958 (1971)

    CrossRef  Google Scholar 

  10. Takeno, T., Miki, H., Sugawara, T., Hoshi, Y., Takagi, T.: A DLC/W-DLC multilayered structure for strain sensing applications. Diam. Relat. Mater. 17(4–5), 713–716 (2008)

    CrossRef  Google Scholar 

  11. Petersen, M., Heckmann, U., Bandorf, R., Gwozdz, V., Schnabel, S., Bräuer, G., Klages, C.P.: Me-DLC films as material for highly sensitive temperature compensated strain gauges. Diam. Relat. Mater. 20(5–6), 814–818 (2011)

    CrossRef  Google Scholar 

  12. Leal, G., Fraga, M.A., Rasia, L.A., Massi, M.: Impact of high N2 flow ratio on the chemical and morphological characteristics of sputtered N-DLC films. Surf. Interface Anal. 49(2), 99–106 (2017)

    CrossRef  Google Scholar 

  13. Robertson, J.: Diamond-like carbon films, properties and applications. In: Sarin, V.K. (ed.) Comprehensive Hard Materials, vol. 3, pp. 101–139. Elsevier Inc., Burlington (2014)

    Google Scholar 

  14. Freund, L.B., Suresh, S.: Thin Film Materials: Stress, Defect Formation and Surface Evolution, pp. 1–820. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  15. Martin, P.M.: Handbook of Deposition Technologies for Films and Coatings Third Edition. Science Applications and Technology. Elsevier Inc., Burlington (2010)

    Google Scholar 

  16. Kenny, T.: Strain gages. In: Wilson, J.S. (eds.) Sensor Technology Handbook, Elsevier Inc., Burlington, pp. 501–529 (2005)

    Google Scholar 

  17. Russo, G.P.: Aerodynamic Measurement: From Physical Principles to Turnkey Instrumentation, pp. 1–24. Woodhead Publishing, Elsevier Inc., Burlington (2011)

    CrossRef  Google Scholar 

  18. Luethje, H., Brand, J.: German Patent DE 199 54 164 A1. Sensor zur Zustandsbestimmung von Kenngroessen an mechanischen Komponenten (1999)

    Google Scholar 

  19. Peiner, E., Tibrewala, A., Bandorf, R., Biehl, S., Lüthje, H., Doering, L.: Micro force sensor with piezoresistive amorphous carbon strain gauge. Sens. Actuators A: Phys. 130–131, 75–82 (2006)

    CrossRef  Google Scholar 

  20. Tibrewala, A., Peiner, E., Bandorf, R., Biehl, S., Lüthje, H.: Transport and optical properties of amorphous carbon and hydrogenated amorphous carbon films. Appl. Surf. Sci. 252(15), 5387–5390 (2006)

    CrossRef  Google Scholar 

  21. Fraga, M.A., Furlan, H., Pessoa, R.S., Rasia, L.A., Mateus, C.F.R.: Studies on SiC, DLC and TiO2 thin films as piezoresistive sensor materials for high temperature application. Microsyst. Technol. 18, 1027–1033 (2012)

    CrossRef  Google Scholar 

  22. Kanda, Y., Yasukawa, A.: Optimum design considerations for silicon piezoresistive pressure sensors. Sens. Actuators A 62, 539–542 (1997)

    CrossRef  Google Scholar 

  23. Geremias, M., Moreira, R.C., Rasia, L.A., Moi, A.: Mathematical modeling of piezoresistive elements. J. Phys: Conf. Ser. 648, 012012 (2015)

    Google Scholar 

Download references

Acknowledgments

São Paulo Research Foundation – FAPESP (processes number 14/18139-8 and 13/17045-7) and by CNPq (processes number 442133/2014-6 and 305153/2015-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Amorim Fraga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Rasia, L.A., Leal, G., Koberstein, L.L., Furlan, H., Massi, M., Fraga, M.A. (2017). Design and Analytical Studies of a DLC Thin-Film Piezoresistive Pressure Microsensor. In: Figueroa-García, J., López-Santana, E., Villa-Ramírez, J., Ferro-Escobar, R. (eds) Applied Computer Sciences in Engineering. WEA 2017. Communications in Computer and Information Science, vol 742. Springer, Cham. https://doi.org/10.1007/978-3-319-66963-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66963-2_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66962-5

  • Online ISBN: 978-3-319-66963-2

  • eBook Packages: Computer ScienceComputer Science (R0)