Advertisement

Design and Analytical Studies of a DLC Thin-Film Piezoresistive Pressure Microsensor

  • Luiz Antonio Rasia
  • Gabriela Leal
  • Leandro Léo Koberstein
  • Humber Furlan
  • Marcos Massi
  • Mariana Amorim FragaEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 742)

Abstract

Diamond-like carbon (DLC) thin films have been investigated for a wide range of applications due to their excellent electrical and mechanical properties. In the last decade, several researches and development activities have been conducted on the use of these thin films as piezoresistors in MEMS pressure sensors. This paper provides an overview on the design of a piezoresistive pressure sensor constituted of a silicon circular diaphragm with four DLC thin-film piezoresistors arranged in the Wheatstone bridge configuration. The sensor was designed from analytical formulas found in the literature.

Keywords

Piezoresistive pressure sensor Diamond-like carbon (DLC) Design Analytical solution 

Notes

Acknowledgments

São Paulo Research Foundation – FAPESP (processes number 14/18139-8 and 13/17045-7) and by CNPq (processes number 442133/2014-6 and 305153/2015-3).

References

  1. 1.
    Fraga, M.A., Pessoa, R.S., Massi, M., Maciel, H.S.: Silicon carbide as base material for MEMS sensors of aerospace use: an overview. Matéria 19(3), 274–290 (2014)Google Scholar
  2. 2.
    Casady, J.B., Johnson, R.W.: Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review. Solid-State Electron. 39(10), 1409–1422 (1996)CrossRefGoogle Scholar
  3. 3.
    Auciello, O., Pacheco, S., Sumant, A.V., Gudeman, C., Sampath, S., Datta, A., Carpick, R.W., Adiga, V.P., Zurcher, P., Ma, Z., Yuan, H.-C., Carlisle, J.A., Kabius, B., Hiller, J., Srinivasan, S.: Are diamonds a MEMS’ best friend? IEEE Microw. Mag. 8(6), 61–75 (2007)CrossRefGoogle Scholar
  4. 4.
    Fraga, M.A., Furlan, H., Pessoa, R.S., Massi, M.: Wide bandgap semiconductor thin films for piezoelectric and piezoresistive MEMS sensors applied at high temperatures: an overview. Microsyst. Technol. 20, 9–21 (2014)CrossRefGoogle Scholar
  5. 5.
    Vetter, J.: 60 years of DLC coatings: historical highlights and technical review of cathodic arc processes to synthesize various DLC types, and their evolution for industrial applications. Surf. Coat. Technol. 257, 213–240 (2014)CrossRefGoogle Scholar
  6. 6.
    Robertson, J.: Diamond-like amorphous carbon. J. Mater. Sci. Eng. R. 37, 129–281 (2002)CrossRefGoogle Scholar
  7. 7.
    Silva, S.R.E., Carey, J.D.: Amorphous carbon thin films. In: Nalwa, H.S. (ed.) Handbook of Thin Films, vol. 4, pp 403–506. Elsevier Inc., Burlington (2002) Google Scholar
  8. 8.
    Fraga, M.A., Bosi, M., Negri, M.: Silicon Carbide in microsystem technology – thin film versus bulk material. In: Saddow, S.E., La Via, F. (eds.) Advanced Silicon Carbide Devices and Processing, pp. 1–30. Intech (2015)Google Scholar
  9. 9.
    Aisenberg, S., Chabot, R.: Ion-beam deposition of thin films of diamond like carbon. J. Appl. Phys. 42(7), 2953–2958 (1971)CrossRefGoogle Scholar
  10. 10.
    Takeno, T., Miki, H., Sugawara, T., Hoshi, Y., Takagi, T.: A DLC/W-DLC multilayered structure for strain sensing applications. Diam. Relat. Mater. 17(4–5), 713–716 (2008)CrossRefGoogle Scholar
  11. 11.
    Petersen, M., Heckmann, U., Bandorf, R., Gwozdz, V., Schnabel, S., Bräuer, G., Klages, C.P.: Me-DLC films as material for highly sensitive temperature compensated strain gauges. Diam. Relat. Mater. 20(5–6), 814–818 (2011)CrossRefGoogle Scholar
  12. 12.
    Leal, G., Fraga, M.A., Rasia, L.A., Massi, M.: Impact of high N2 flow ratio on the chemical and morphological characteristics of sputtered N-DLC films. Surf. Interface Anal. 49(2), 99–106 (2017)CrossRefGoogle Scholar
  13. 13.
    Robertson, J.: Diamond-like carbon films, properties and applications. In: Sarin, V.K. (ed.) Comprehensive Hard Materials, vol. 3, pp. 101–139. Elsevier Inc., Burlington (2014)Google Scholar
  14. 14.
    Freund, L.B., Suresh, S.: Thin Film Materials: Stress, Defect Formation and Surface Evolution, pp. 1–820. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  15. 15.
    Martin, P.M.: Handbook of Deposition Technologies for Films and Coatings Third Edition. Science Applications and Technology. Elsevier Inc., Burlington (2010)Google Scholar
  16. 16.
    Kenny, T.: Strain gages. In: Wilson, J.S. (eds.) Sensor Technology Handbook, Elsevier Inc., Burlington, pp. 501–529 (2005)Google Scholar
  17. 17.
    Russo, G.P.: Aerodynamic Measurement: From Physical Principles to Turnkey Instrumentation, pp. 1–24. Woodhead Publishing, Elsevier Inc., Burlington (2011)CrossRefGoogle Scholar
  18. 18.
    Luethje, H., Brand, J.: German Patent DE 199 54 164 A1. Sensor zur Zustandsbestimmung von Kenngroessen an mechanischen Komponenten (1999)Google Scholar
  19. 19.
    Peiner, E., Tibrewala, A., Bandorf, R., Biehl, S., Lüthje, H., Doering, L.: Micro force sensor with piezoresistive amorphous carbon strain gauge. Sens. Actuators A: Phys. 130–131, 75–82 (2006)CrossRefGoogle Scholar
  20. 20.
    Tibrewala, A., Peiner, E., Bandorf, R., Biehl, S., Lüthje, H.: Transport and optical properties of amorphous carbon and hydrogenated amorphous carbon films. Appl. Surf. Sci. 252(15), 5387–5390 (2006)CrossRefGoogle Scholar
  21. 21.
    Fraga, M.A., Furlan, H., Pessoa, R.S., Rasia, L.A., Mateus, C.F.R.: Studies on SiC, DLC and TiO2 thin films as piezoresistive sensor materials for high temperature application. Microsyst. Technol. 18, 1027–1033 (2012)CrossRefGoogle Scholar
  22. 22.
    Kanda, Y., Yasukawa, A.: Optimum design considerations for silicon piezoresistive pressure sensors. Sens. Actuators A 62, 539–542 (1997)CrossRefGoogle Scholar
  23. 23.
    Geremias, M., Moreira, R.C., Rasia, L.A., Moi, A.: Mathematical modeling of piezoresistive elements. J. Phys: Conf. Ser. 648, 012012 (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Universidade Regional do Noroeste do Estado do Rio Grande do SulIjuíBrazil
  2. 2.Universidade Federal de São PauloSão José dos CamposBrazil
  3. 3.Faculdade de Tecnologia de São José dos CamposSão José dos CamposBrazil
  4. 4.Faculdade de Tecnologia de São PauloSão PauloBrazil
  5. 5.Universidade Presbiteriana MackenzieSão PauloBrazil
  6. 6.Universidade BrasilSão PauloBrazil

Personalised recommendations