Model and Design of the Embedded Hexapod Robot Aduka Used for Hazardous Environment Inspections

  • Edicarla P. AndradeEmail author
  • Saulo M. Maia
  • Rejane C. Sá
  • José Luiz M. Uchôa Júnior
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 742)


A key to the advancement of robotics is to create more complex, flexible and sturdier robot structures and controllers. In order to accomplish this task it is crucial to first develop a 3D model that allows to make a robot well-designed and easily reconfigurable, where one can change its structure, add and remove degrees of freedom of legs, create and simulate new patterns of locomotion, and other adjustments. This research demonstrates the development of the embedded hexapod robot Aduka, a mobile robot powered by an embedded system. Using BeagleBone Black, other single boards and an operating system FreeBSD it can be remotely controlled by computers and mobile devices for hazardous environment inspections.


Hexapod robot 3D modeling Single boards FreeBSD BeagleBone Black Embedded robot 


  1. 1.
    Al-Jarrah, M.A.: Developing 3D model for mobile robot environment using mono-vision system. In: 2016 7th International Conference on Computer Science and Information Technology, CSIT 2016. IEEE (2016)Google Scholar
  2. 2.
    Demasi, D.: Modelagem dinâmica e de controle de um mecanismo de três de liberdade para aplicacao em um robô hexápode. Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (2012)Google Scholar
  3. 3.
    Woering, R.: Simulating the first steps of a walking hexapod robot. University of Technology Eindhoven (2011)Google Scholar
  4. 4.
    Saranli, U.: Design, modeling and preliminary control of a compliant Hexapod Robot. In: Proceedings of the 2000 IEEE lnternational Conference on Robotics & Automation, San Francisco, CA (2000)Google Scholar
  5. 5.
    Bräunl, T.: Embedded Robotics: Mobile Robot Design and Applications with Embedded Systems. Springer Science & Business Media, New York (2008)Google Scholar
  6. 6.
    Pedro N.J., Norberto, P.: CAD-based off-line Robot programming. In: Conference on Robotics, Automation and Mechatronics. IEEE (2010)Google Scholar
  7. 7.
    Olivier, M.: Cyberbotics Ltd., - Webots\(^{\text{TM}}\): professional mobile robot simulation. Int. J. Adv. Robot. Syst. 1(1), 40–43 (2004)Google Scholar
  8. 8.
    BeagleBone black foundation.
  9. 9.
    ICCART.: LM2596 Step-down Voltage Regulator, DC-DC Step Down Adjustable Converter Power Supply Module (2016).
  10. 10.
    Watson, R.N.M.: New approaches to operating system security extensibility. University of Cambridge, Computer Laboratory, Technical Report, UCAM-CL-TR-818 (2011)Google Scholar
  11. 11.
    Kerner, S.: FreeBSD, Stealth-Growth Open Source Project.
  12. 12.
    Curti, J. C.: Análise de segurança em aplicações que utilizam plataformas UNIX e MS-Windows como Clientes e Servidores (2004)Google Scholar
  13. 13.
    Ferrari, D.G., Eto, R.M., Santos, N.M.: Classificação Geral dos Robôs.
  14. 14.
    Dulimarta, H.S., Jain, A.K.: A client/server control architecture for robot navigation. Pattern Recogn. 29(8), 1259–1284 . Elsevier, Amsterdam(1996)Google Scholar
  15. 15.
    Raibert, M.H.: Legged robots. Commun. ACM 29(6), 499–514 (1986). ACM, New YorkGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Edicarla P. Andrade
    • 1
    Email author
  • Saulo M. Maia
    • 1
  • Rejane C. Sá
    • 1
  • José Luiz M. Uchôa Júnior
    • 1
  1. 1.Laboratório de Inovação Tecnológica-IFCEFortaleza-CeBrazil

Personalised recommendations