Modeling, Control and Simulation of a Quadrotor for Attitude Stabilization

  • Bárbara B. CarlosEmail author
  • Antonio É. R. M. de Oliveira
  • Auzuir R. de Alexandria
  • Rejane C. Sá
  • Antonio W. O. Rodrigues
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 742)


Unmanned Aerial Vehicle (UAV) are increasingly playing an important role in various fields of application and their development, with the advancement and decreasing cost of technology, became simpler. In this paper we present a mathematical model for a quadrotor and different control strategies. The control task is based on the discretization of the system by Tustin’s Method to achieve the angular stabilization of the quadrotor. The proposed approach shows the standard single loop and nested loop model, hierarchizing the mid-level attitude control, evaluating the performance of a P, PD and P-P controllers obtained by linearizing the plant’s dynamics around an equilibrium point. Simulation results compared the proposed controllers providing a possible solution for future implementation.


Quadrotor Modeling Discrete control Simulation 



The authors would like to express their gratitude to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Instituto Federal do Ceará (IFCE) for the research financial support.


  1. 1.
    Das, A., Subbarao, K., Lewis, F.: Dynamic inversion of quadrotor with zero-dynamics stabilization. In: IEEE International Conference on Control, pp. 1189–1194 (2008)Google Scholar
  2. 2.
    Sanca, A.S., Alsina, P.J., Cerqueira, J.: Dynamic modelling of a quadrotor aerial vehicle with nonlinear inputs. In: IEEE Latin American Robotic Symposium. LARS 2008, pp. 143–148 (2008)Google Scholar
  3. 3.
    Amir, M., Abbass, V.: Modeling of quadrotor helicopter dynamics. In: International Conference on Smart Manufacturing Application, pp. 100–105 (2008)Google Scholar
  4. 4.
    Bouabdallah, S., Siegwart, R.: Backstepping and sliding-mode techniques applied to an indoor micro quadrotor. In: International Conference on Smart Manufacturing Application, pp. 2247–2252 (2005)Google Scholar
  5. 5.
    Madani, T., Benallegue, A.: Sliding mode observer and backstepping control for a quadrotor unmanned aerial vehicles. In: American Control Conference, ACC 2007, pp. 5887–5892 (2007)Google Scholar
  6. 6.
    Bouabdallah, S., Noth, A., Siegwart, R.: PID vs LQ control techniques applied to an indoor micro quadrotor. In: Proceedings of 2004 IEEE/RSJ International Conference On Intelligent Robots and Systems, pp. 2451–2456 (2004)Google Scholar
  7. 7.
    Coza, C., Macnab, C.: A new robust adaptive-fuzzy control method applied to quadrotor helicopter stabilization. In: Annual meeting of the North American Fuzzy Information Processing Society, NAFIPS 2006, pp. 454–458 (2006)Google Scholar
  8. 8.
    Hamel, T., Mahony, R., Lozano, R., Ostrowski, J.: Dynamic modeling and configuration stabilization for an X4-flayer. In: 15th Triennial World Congress (2002)Google Scholar
  9. 9.
    Altuğ, E., Ostrowski, J.P., Mahony, R.: Control of a quadrotor helicopter using visual feedback. In: Proceedings of the 2002 IEEE conference on Robotics & Automation (2002)Google Scholar
  10. 10.
    Altuğ, E., Ostrowski, J.P., Taylor, C.J.: Quadrotor control using dual camera visual feedback. In: Proceedings of the 2003 IEEE conference on Robotics & Automation (2003)Google Scholar
  11. 11.
    Altuğ, E., Taylor, C.J.: Vision-based pose estimation and control of a model helicopter. In: International Conference on Mechatronics (2004)Google Scholar
  12. 12.
    Guenard, N., Hamel, T., Mahony, R.: A practical visual servo control for an unmanned aerial vehicle. IEEE Trans. Robot 24, 331–340 (2008)Google Scholar
  13. 13.
    Suter, D., Hamel, T., Mahony, R.: Visual servo control using homography estimation for the stabilization of an X4-flayer. In: Proceedings of the 41st IEEE conference on Decision and Control (2002)Google Scholar
  14. 14.
    Moktari, A., Benallegue, A.: Dynamic feedback controller of Euler Angles and wind parameters estimation for a quadrotor unmanned aerial vehicle. In: Proceedings of the 2004 IEEE conference on Robotics & Automation (2004)Google Scholar
  15. 15.
    Benallegue, A., Mokhtari, A., Fridman, L.: Feedback linearization and high order sliding mode observer for a quadrotor UAV. In: Proceedings of the 2006 International Workshop on Variable Structure Systems (2006)Google Scholar
  16. 16.
    Dunfied, J., Tarbouchi, M., Labonte, G.: Neural network based control of a four rotor helicopter. In: IEEE International Conference on Industrial Technology (2004)Google Scholar
  17. 17.
    Henriques, B.S.M.: Estimation and control of a quadrotor attitude. Master’s thesis, Universidade Técnica de Lisboa (2011)Google Scholar
  18. 18.
    Pillay, P., Khrishnan, R.: Modeling, Simulation and Analysis of Permanent-Magnet Motor Drives, Part II: The brushless DC motor drive, vol. 25, pp. 274–279 (1989)Google Scholar
  19. 19.
    Doanç, K.: Design of two wheeled twin rotored hybrid robotic platform. Master’s thesis, Atilim University (2010)Google Scholar
  20. 20.
    Åström, K.J., Wittenmark, B.W.: Computer-Controlled Systems-Theory and Design, 3rd edn. Prentice Hall, Englewood Cliffs (1997)Google Scholar
  21. 21.
    Mattey, R.A.: Bifilar pendulum technique for determining mass properties of discos packages (1974)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Bárbara B. Carlos
    • 1
    Email author
  • Antonio É. R. M. de Oliveira
    • 1
  • Auzuir R. de Alexandria
    • 1
  • Rejane C. Sá
    • 1
  • Antonio W. O. Rodrigues
    • 1
  1. 1.Instituto Federal do Ceará (IFCE)FortalezaBrazil

Personalised recommendations