Advertisement

Algorithmic Trading Using Deep Neural Networks on High Frequency Data

  • Andrés Arévalo
  • Jaime Niño
  • German Hernandez
  • Javier Sandoval
  • Diego León
  • Arbey Aragón
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 742)

Abstract

In this work, a high-frequency trading strategy using Deep Neural Networks (DNNs) is presented. The input information consists of: (i). Current time (hour and minute); (ii). The last n one-minute pseudo-returns, where n is the sliding window size parameter; (iii). The last n one-minute standard deviations of the price; (iv). The last n trend indicator, computed as the slope of the linear model fitted using the transaction prices inside a particular minute. The DNN predicts the next one-minute pseudo-return, this output is later transformed to obtain a the next predicted one-minute average price. This price is used to build a high-frequency trading strategy that buys (sells) when the next predicted average price is above (below) the last closing price.

Keywords

Short-term forecasting High-frequency trading Computational finance Algorithmic trading Deep Neural Networks 

References

  1. 1.
    Arora, A., Candel, A., Lanford, J., LeDell, E., Parmar, V.: Deep Learning with H2O (2015)Google Scholar
  2. 2.
    Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–127 (2009). http://dx.doi.org/10.1561/2200000006
  3. 3.
    Dalto, M.: Deep neural networks for time series prediction with applications in ultra-short-term wind forecasting. Rn (\(\varTheta \)1). http://centar.open.hr/_download/repository/KDI-Djalto.pdf
  4. 4.
    De Gooijer, J.G., Hyndman, R.J.: 25 years of time series forecasting. Int. J. Forecast. 22(3), 443–473 (2006). https://doi.org/10.1016/j.ijforecast.2006.01.001
  5. 5.
    Härdle, W., Kleinow, T., Stahl, G.: Applied Quantitative Finance. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-662-05021-7
  6. 6.
    Haykin, S.: Neural Networks and Learning Machines. Pearson Education, Inc.,Upper Saddle River (2009)Google Scholar
  7. 7.
    Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural Netw. 4(2), 251–257 (1991). https://doi.org/10.1016/0893-6080(91)90009-T
  8. 8.
    Intercontinental Exchange Inc: TAQ NYSE Trades (2016). http://www.nyxdata.com/data-products/nyse-trades-eod
  9. 9.
    Kaastra, I., Boyd, M.: Designing a neural network for forecasting financial and economic time series. Neurocomputing 10(3), 215–236 (1996). http://dx.doi.org/10.1016/0925-2312(95)00039-9
  10. 10.
    Krollner, B., Vanstone, B., Finnie, G.: Financial time series forecasting with machine learning techniques: a survey (2010). http://works.bepress.com/bruce_vanstone/17/
  11. 11.
    Larochelle, H., Bengio, Y.: Exploring strategies for training deep neural networks. J. Mach. Learn. Res., 1–40 (2009). http://dl.acm.org/citation.cfm?id=1577070
  12. 12.
    Li, X., Huang, X., Deng, X., Zhu, S.: Enhancing quantitative intra-day stock return prediction by integrating both market news and stock prices information. Neurocomputing 142, 228–238 (2014). http://dx.doi.org/10.1016/j.neucom.2014.04.043
  13. 13.
    Marszałek, A., Burczyński, T.: Modeling and forecasting financial time series with ordered fuzzy candlesticks. Inf. Sci. 273, 144–155 (2014). https://doi.org/10.1016/j.ins.2014.03.026
  14. 14.
    Mills, T.C., Markellos, R.N.: The Econometric Modelling of Financial Time Series. Cambridge University Press, Cambridge (2008). https://doi.org/10.1017/CBO9780511817380
  15. 15.
    Nusca, A., Hackett, R., Gupta, S.: Arno Candel, physicist and hacker, 0xdata. Meet Fortune’s 2014 Big Data All-Stars (2014). http://fortune.com/2014/08/03/meet-fortunes-2014-big-data-all-stars/
  16. 16.
    Preethi, G., Santhi, B.: Stock market forecasting techniques: a survey. J. Theoret. Appl. Inf. Technol. 46(1) (2012)Google Scholar
  17. 17.
    Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2014). https://doi.org/10.1016/j.neunet.2014.09.003
  18. 18.
    Tsay, R.S.: Analysis of Financial Time Series, vol. 543. Wiley, New York (2005)Google Scholar
  19. 19.
    White, H.: economic prediction using neural networks: the case of IBM daily stock returns. In: IEEE International Conference on Neural Networks, pp. 451–458. IEEE (1988). https://doi.org/10.1109/ICNN.1988.23959
  20. 20.
    Wilder, J.W.: New Concepts in Technical Trading Systems. Trend Research, McLeansville (1978)Google Scholar
  21. 21.
    Zeiler, M.D.: ADADELTA: An Adaptive Learning Rate Method, p. 6 (2012). http://arxiv.org/abs/1212.5701
  22. 22.
    Zekic, M.: Neural network applications in stock market predictions-a methodology analysis. In: Proceedings of the 9th International Conference on Information and Intelligent Systems (1998). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.109.3374&rep=rep1&type=pdf

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Andrés Arévalo
    • 1
  • Jaime Niño
    • 1
  • German Hernandez
    • 1
  • Javier Sandoval
    • 2
  • Diego León
    • 2
  • Arbey Aragón
    • 1
  1. 1.Universidad Nacional de ColombiaBogotáColombia
  2. 2.Universidad ExternadoBogotáColombia

Personalised recommendations