Advertisement

Solving Dial-A-Ride Problems Using Multiple Ant Colony System with Fleet Size Minimisation

  • Twinkle Tripathy
  • Sarat Chandra Nagavarapu
  • Kaveh Azizian
  • Ramesh Ramasamy Pandi
  • Justin DauwelsEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 650)

Abstract

This paper proposes an ant colony optimization (ACO) based algorithm to minimise the fleet size required to solve dial-a-ride problem (DARP). In this work, a static multi-vehicle case of DARP is considered where routes of multiple vehicles are designed to serve customer requests which are known a priori. DARP necessitates the need of high quality algorithm to provide optimal feasible solutions. We employ an improved ACO algorithm called ant colony system (ACS) to solve DARP. The fleet minimisation is also achieved by using ACS. In summary, multiple ACS are employed to minimise the fleet size while generating feasible solutions for DARP. Furthermore, the theoretical results are also validated through simulations.

Keywords

Dial-a-ride problem Fleet size minimisation Ant colony optimisation 

References

  1. 1.
    Wilson, N.H., Sussman, J.M., Wong, H.K., Higonnet, T.: Scheduling algorithms for a dial-a-ride system. Massachusetts Institute of Technology, Urban Systems Laboratory (1971)Google Scholar
  2. 2.
    Psaraftis, H.N.: An exact algorithm for the single vehicle many-to-many dial-a-ride problem with time windows. Transp. Sci. 17(3), 351–357 (1983)CrossRefGoogle Scholar
  3. 3.
    Healy, P., Moll, R.: A new extension of local search applied to the dial-a-ride problem. Eur. J. Oper. Res. 83(1), 83–104 (1995)CrossRefzbMATHGoogle Scholar
  4. 4.
    Cordeau, J.-F., Laporte, G.: The dial-a-ride problem: models and algorithms. Ann. Oper. Res. 153(1), 29–46 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cordeau, J.-F., Laporte, G.: A tabu search heuristic for the static multi-vehicle dial-a-ride problem. Transp. Res. Part B: Methodol. 37(6), 579–594 (2003)CrossRefGoogle Scholar
  6. 6.
    Attanasio, A., Cordeau, J.-F., Ghiani, G., Laporte, G.: Parallel tabu search heuristics for the dynamic multi-vehicle dial-a-ride problem. Parallel Comput. 30(3), 377–387 (2004)CrossRefGoogle Scholar
  7. 7.
    Cordeau, J.-F., Laporte, G.: The dial-a-ride problem (DARP): variants, modeling issues and algorithms. 4OR: A Q. J. Oper. Res. 1(2), 89–101 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Rekiek, B., Delchambre, A., Saleh, H.A.: Handicapped person transportation: an application of the grouping genetic algorithm. Eng. Appl. Artif. Intell. 19(5), 511–520 (2006)CrossRefGoogle Scholar
  9. 9.
    Pisinger, D., Ropke, S.: A general heuristic for vehicle routing problems. Comput. Oper. Res. 34(8), 2403–2435 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dorigo, M., Stutzle, T.: Ant Colony Optimization. The MIT Press (2004)Google Scholar
  11. 11.
    Dorigo, M.: Optimization, learning and natural algorithms, Ph.D. thesis, Politecnico di Milano, Italy (1992)Google Scholar
  12. 12.
    Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)CrossRefGoogle Scholar
  13. 13.
    Gambardella, L.M., Taillard, E., Agazzi, G.: MACS-VRPTW: a multiple ant colony system for vehicle routing problems with time windows. Istituto Dalle Molle Di Studi Sull Intelligenza Artificiale (1999)Google Scholar
  14. 14.
    Paquette, J., Cordeau, J.-F., Laporte, G., Pascoal, M.M.B.: Combining multicriteria analysis and tabu search for dial-a-ride problems. Transp. Res. Part B: Methodol. 52, 1–16 (2013)CrossRefGoogle Scholar
  15. 15.
    Blum, C.: Ant colony optimization: introduction and recent trends. Phys. Life Rev. 2(4), 353–373 (2005)CrossRefGoogle Scholar
  16. 16.
    Tan, W.F., Lee, L.S., Majid, Z.A., Seow, H.V.: Ant colony optimization for capacitated vehicle routing problem. J. Comput. Sci. 8(6), 846–852 (2012)CrossRefGoogle Scholar
  17. 17.
    Bullnheimer, B., Hartl, R.F., Strauss, C.: Applying the ant system to the vehicle routing problem. In: Meta-heuristics: Advances and Trends in Local Search Paradigms for Optimization, pp. 285–296. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  18. 18.

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Twinkle Tripathy
    • 1
  • Sarat Chandra Nagavarapu
    • 1
  • Kaveh Azizian
    • 1
  • Ramesh Ramasamy Pandi
    • 1
  • Justin Dauwels
    • 1
    Email author
  1. 1.Nanyang Technological UniversitySingaporeSingapore

Personalised recommendations