A Reference-Inspired Evolutionary Algorithm with Subregion Decomposition for Many-Objective Optimization

  • Xiaogang Fu
  • Jianyong SunEmail author
  • Qingfu Zhang
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 650)


In this paper, we propose a reference-inspired multiobjective evolutionary algorithm for many-objective optimisation. The main idea is (1) to summarise information inspired by a set of randomly generated reference points in the objective space to strengthen the selection pressure towards the Pareto front; and (2) to decompose the objective space into subregions for diversity management and offspring recombination. We showed that the mutual relationship between the objective vectors and the reference points provides not only a fine selection pressure, but also a balanced convergence-diversity information. The decomposition of the objective space into subregions is able to preserve the Pareto front’s diversity. A restricted stable match strategy is proposed to choose appropriate parent solutions from solution sets constructed at the subregions for high-quality offspring generation. Controlled experiments conducted on a commonly-used benchmark test suite have shown the effectiveness and competitiveness of the proposed algorithm in comparison with several state-of-the-art many-objective evolutionary algorithms.


Many-objective optimization Reference-inspired Domain decomposition 


  1. 1.
    Bader, J., Zitzler, E.: HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 19(1), 45–76 (2011)CrossRefGoogle Scholar
  2. 2.
    Bosman, P.A., Thierens, D.: The balance between proximity and diversity in multiobjective evolutionary algorithms. IEEE Trans. Evol. Comput. 7(2), 174–188 (2003)CrossRefGoogle Scholar
  3. 3.
    Deb, K., Goyal, M.: A combined genetic adaptive search (GeneAS) for engineering design. Comput. Sci. Inf. 26, 30–45 (1996)Google Scholar
  4. 4.
    Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. Springer (2005)Google Scholar
  5. 5.
    Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)CrossRefGoogle Scholar
  6. 6.
    Figueira, J., Liefooghe, A., Talbi, E.G., Wierzbicki, A.: A parallel multiple reference point approach for multobjective optimization. Eur. J. Oper. Res. 205(2), 390–400 (2010)CrossRefzbMATHGoogle Scholar
  7. 7.
    Jiang, S., Ong, Y.S., Zhang, J., Feng, L.: Consistencies and contradictions of performance metrics in multiobjective optimization. IEEE Trans. Cybern. 44(12), 2391–2404 (2014)CrossRefGoogle Scholar
  8. 8.
    Li, B., Li, J., Tang, K., Yao, X.: Many-objective evolutionary algorithms: a survey. ACM Comput. Surv. (CSUR) 48(1), 13 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Li, K., Deb, K., Zhang, Q., Kwong, S.: An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans. Evol. Alg. 19(5), 694–716 (2015)CrossRefGoogle Scholar
  10. 10.
    Li, K., Kwong, S., Zhang, Q., Deb, K.: Interrelationship-based selection for decomposition multiobjective optimization. IEEE Trans. Cybern. 45(10), 2076–2088 (2015)CrossRefGoogle Scholar
  11. 11.
    Liu, H.L., Gu, F., Zhang, Q.: Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems. IEEE Trans. Evol. Comput. 18(3), 450–455 (2014)CrossRefGoogle Scholar
  12. 12.
    Moen, H.J., Hansen, N.B., Hovland, H., Tørresen, J.: Many-objective optimization using taxi-cab surface evolutionary algorithm. In: Evolutionary Multi-Criterion Optimization, pp. 128–142. Springer (2013)Google Scholar
  13. 13.
    Kata, P., Yao, X.: A new multi-objective evolutionary optimisation algorithm: the two-archive algorithm. In: 2006 International Conference on Computational Intelligence and Security, Vol. 1, pp. 286–291. IEEE (2006)Google Scholar
  14. 14.
    Wagner, T., Beume, N., Naujoks, B.: Pareto-, aggregation-, and indicator-based methods in many-objective optimization. In: Proceedings of Evolutionary Multi-Criterion Optimization. Lecture Notes in Computer Science, vol. 4403, Matsushima, Japan, pp. 742–756. Springer, Heidelberg (2007)Google Scholar
  15. 15.
    Wang, R., Purshouse, R.C., Fleming, P.J.: Preference-inspired coevolutionary algorithms for many-objective optimization. IEEE Trans. Evol. Comput. 17(4), 474–494 (2013)CrossRefGoogle Scholar
  16. 16.
    Yang, S., Li, M., Liu, X., Zheng, J.: A grid-based evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 17(5), 721–736 (2013)CrossRefGoogle Scholar
  17. 17.
    Yuan, Y., Xu, H., Wang, B., Yao, X.: A new dominance relation-based evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 20(1), 16–37 (2016)CrossRefGoogle Scholar
  18. 18.
    Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)CrossRefGoogle Scholar
  19. 19.
    Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.School of Electronic EngineeringShanghai Dianji UniversityShanghaiChina
  2. 2.School of Mathematics and StatisticsXi’an Jiaotong UniversityXi’anChina
  3. 3.Department of Computer ScienceCity University of Hong KongHong KongHong Kong

Personalised recommendations