Advertisement

The Transition Towards Industry 4.0: Business Opportunities and Expected Impacts for Suppliers and Manufacturers

Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 513)

Abstract

Industry 4.0 is today one of the major opportunities for companies competing in the market. In last few years, more and more companies have started to define the path to move from their traditional production systems towards the Industry 4.0 paradigm; accordingly, different models have been proposed in literature to support the business transformation. This paper reviews the technological improvements proposed by Industry 4.0 to understand what are the main processes involved in the transformation and what are the suitable strategies to face the business and operational changes that are required. In particular, we identify and discuss two main perspectives: the suppliers and the customers. For both of them, different business opportunities are presented, and the expected performance improvements discussed.

Keywords

Industry 4.0 Smart manufacturing Business transformation 

References

  1. 1.
    Thoben, K.-D., Wiesner, S., Wuest, T.: “Industrie 4.0” and smart manufacturing - a review of research issues and application examples. Int. J. Autom. Tech. 11(1), 4–19 (2017)CrossRefGoogle Scholar
  2. 2.
    Kang, H.S., Lee, J.Y., Choi, S., Kim, H., Park, J.H., Son, J.Y., Do Noh, S.: Smart manufacturing: past research, present findings, and future directions. Int. J. Prec. Eng. Manuf. Green Tech. 3(1), 111–128 (2016)CrossRefGoogle Scholar
  3. 3.
    Qin, J., Liu, Y., Grosvenor, R.A.: Categorical framework of manufacturing for industry 4.0 and beyond. Procedia CIRP 52, 173–178 (2016). Newman, S., Nassehi, A. (eds.), Elsevier BV, AmsterdamCrossRefGoogle Scholar
  4. 4.
    Geissbauer, R., Vedso, J., Schrauf, S.: Industry 4.0: Building the digital enterprise. Technical report, PricewaterhouseCoopers (2016)Google Scholar
  5. 5.
    Prifti, L., Knigge, M., Kienegger, H., Krcmar, H.: A competency model for “Industrie 4.0” employees. In: 13th International Conference on Wirtschaftsinformatik (WI 2017), St. Gallen, pp. 46–60 (2017)Google Scholar
  6. 6.
    Mittal, S., Khan, M., Wuest, T.: Smart manufacturing: characteristics and technologies. In: Harik, R., Rivest, L., Bernard, A., Eynard, B., Bouras, A., Bouras, A. (eds.) PLM 2016. IFIPAICT, vol. 492, pp. 539–548. Springer, Cham (2016)CrossRefGoogle Scholar
  7. 7.
    Rüssmann, M., Lorenz, M., Gerbert, P., Waldner, M., Justus, J., Engel, P., Harnish, M.: Industry 4.0: The Future of Productivity and Growth in Manufacturing Industries. Technical report. The Boston Consulting Group (2015)Google Scholar
  8. 8.
    Chaplin, J.C., Bakker, O.J., de Silva, L., Sanderson, D., Kelly, E., Logan, B., Ratchev, S.M.: Evolvable assembly systems: a distributed architecture for intelligent manufacturing. IFAC-Pap.OnLine 48(3), 2065–2070 (2015). Dolgui, A., Sasiadek, J., Zaremba, M. (eds.)CrossRefGoogle Scholar
  9. 9.
    Park, H.S.: From automation to autonomy-a new trend for smart manufacturing. In: DAAAM International Scientific Book, vol. 3, pp. 75–110 (2013)Google Scholar
  10. 10.
    Lee, J., Ardakani, H.D., Yang, S., Bagheri, B.: Industrial big data analytics and cyber-physical systems for future maintenance & service innovation. Procedia CIRP 38, 3–7 (2015). Erkoyuncu, J.A., Tapoglou, N., Tomiyama, T., Tiwari, A., Mehnen, J., Roy, R., Tracht, K., Shehab, E. (eds.), Elsevier BV, AmsterdamCrossRefGoogle Scholar
  11. 11.
    Khan, A., Turowski, K.: A survey of current challenges in manufacturing industry and preparation for industry 4.0. In: Abraham, A., Kovalev, S., Tarassov, V., Snášel, V. (eds.) IITI 2016. AISC, vol. 450, pp. 15–26. Springer, Heidelberg (2016)Google Scholar
  12. 12.
    Da Xu, L., He, W., Li, S.: Internet of things in industries: a survey. IEEE Trans. Ind. Inf. 10(4), 2233–2243 (2014)CrossRefGoogle Scholar
  13. 13.
    Brodsky, A., Krishnamoorthy, M., Menascé, D.A., Shao, G., Rachuri, S.: Toward smart manufacturing using decision analytics. In: Chang, W., Huan, J., Cercone, N., Pyne, S., Honavar, V., Lin, J., Hu, X.T., Aggarwal, C., Mobasher, B., Pei, J., Nambiar, R. (eds.) 2014 IEEE International Conference on Big Data, pp. 967–977 (2014)Google Scholar
  14. 14.
    Tolio, T., Sacco, M., Terkaj, W., Urgo, M.: Virtual factory: an integrated framework for manufacturing systems design and analysis. Procedia CIRP 7, 25–30 (2013). Elsevier BV, AmsterdamCrossRefGoogle Scholar
  15. 15.
    Kagermann, H., Wahlster, W., Johannes, H.: Recommendations for implementing the strategic initiative Industrie 4.0. Technical report. Industry-Science Research Alliance (2013)Google Scholar
  16. 16.
    Hermann, M., Pentek, T., Otto, B.: Design principles for industrie 4.0 scenarios. In: Sprague, R.H., Bui, T.X. (eds.) 49th Hawaii International Conference on Competitive Manufacturing 49th Annual Hawaii International Conference on System Sciences, HICSS 2016, pp. 3928–3937 (2016)Google Scholar
  17. 17.
    VDI/VDE, ZVEI: Reference Architecture Model Industrie 4.0 (RAMI4.0) (2015)Google Scholar
  18. 18.
    Lee, J., Bagheri, B., Kao, H.A.: Recent advances and trends of cyber-physical systems and big data analytics in industrial informatics. In: International Proceeding of Int Conference on Industrial Informatics (INDIN), pp. 1–6 (2014)Google Scholar
  19. 19.
    Schoenthaler, F., Augenstein, D., Karle, T.: Design and governance of collaborative business processes in industry 4.0. In: Proceedings of the Workshop on Cross-Organizational and Cross-Company BPM (XOC-BPM) Co-located with the 17th IEEE Conference on Business Informatics (CBI 2015), Lisbon, vol. 13, pp. 1–8 (2015)Google Scholar
  20. 20.
    Hu, H., Wen, Y., Chua, T.S., Li, X.: Toward scalable systems for big data analytics: a technology tutorial. IEEE Access 2, 652–687 (2014)CrossRefGoogle Scholar
  21. 21.
    Koren, Y., Shpitalni, M.: Design of reconfigurable manufacturing systems. J. Manuf. Syst. 29(4), 130–141 (2010)CrossRefGoogle Scholar
  22. 22.
    Stock, T., Seliger, G.: Opportunities of sustainable manufacturing in Industry 4.0. Procedia CIRP 40, 536–541 (2016). Elsevier BV, AmsterdamCrossRefGoogle Scholar
  23. 23.
    Schmidt, R., Möhring, M., Härting, R.C., Reichstein, C., Neumaier, P., Jozinović, P.: Industry 4.0-potentials for creating smart products: empirical research results. In: Abramowicz, W. (ed.) BIS 2015, vol. 208, pp. 16–27. Springer International Publishing, Heidelberg (2015)CrossRefGoogle Scholar
  24. 24.
    Romero, D., Bernus, P., Noran, O., Stahre, J., Fast-Berglund, Å.: The operator 4.0: human cyber-physical systems & adaptive automation towards human-automation symbiosis work systems. In: Naas, I., Vendrametto, O., Reis, J.M., Goncalves, R.F., Silva, M.T., Kiritsis, D., von Cieminski, G. (eds.) APMS 2016. IFIPAICT, vol. 488, pp. 677–686. Springer, Cham (2016)CrossRefGoogle Scholar
  25. 25.
    Erol, S., Schumacher, A., Sihn, W.: Strategic guidance towards industry 4.0–a three-stage process model. In: 2016 International Conference on Competitive Manufacturing (2016)Google Scholar
  26. 26.
    Schumacher, A., Erol, S., Sihn, W.: A maturity model for assessing industry 4.0 readiness and maturity of manufacturing enterprises. In: Newman, S., Nassehi, A. (eds.) Procedia CIRP, vol. 52, pp. 161–166. Elsevier BV, Amsterdam (2016)Google Scholar
  27. 27.
    Rockwell Automation: The Connected Enterprise Maturity Model. Technical report (2014)Google Scholar
  28. 28.
    Baines, T.S., Lightfoot, H.W., Benedettini, O., Kay, J.M.: The servitization of manufacturing: a review of literature and reflection on future challenges. J. Manuf. Technol. Manage. 20(5), 547–567 (2009)CrossRefGoogle Scholar
  29. 29.
    Bauer, H., Baur, C., Mohr, D., Tschiesner, A., Weskamp, T., Alicke, K., Wee, D.: Industry 4.0 after the initial hype-where manufacturers are finding value and how they can best capture it. Technical report. McKinsey Global Survey (2016)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  1. 1.Department of Management, Information and Production EngineeringUniversity of BergamoDalmineItaly

Personalised recommendations