Skip to main content

Toward Model-Based Big Data-as-a-Service: The TOREADOR Approach

  • Conference paper
  • First Online:
Advances in Databases and Information Systems (ADBIS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10509))

Included in the following conference series:


The full potential of Big Data Analytics (BDA) can be unleashed only by overcoming hurdles like the high architectural complexity and lack of transparency of Big Data toolkits, as well as the high cost and lack of legal clearance of data collection, access and processing procedures. We first discuss the notion of Big Data Analytics-as-a-Service (BDAaaS) to help potential users of BDA in overcoming such hurdles. We then present TOREADOR, a first approach to BDAaaS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


  1. 1.

    Again, the order of the stages depends on the specific BDA and is decided by the user.


  1. Abadi, D., Agrawal, R., Ailamaki, A., Balazinska, M., Bernstein, P.A., Carey, M.J., Chaudhuri, S., Dean, J., Doan, A., Franklin, M.J., Gehrke, J., Haas, L.M., Halevy, A.Y., Hellerstein, J.M., Ioannidis, Y.E., Jagadish, H.V., Kossmann, D., Madden, S., Mehrotra, S., Milo, T., Naughton, J.F., Ramakrishnan, R., Markl, V., Olston, C., Ooi, B.C., Ré, C., Suciu, D., Stonebraker, M., Walter, T., Widom, J.: The beckman report on database research. ACM SIGMOD Rec. 43(3), 61–70 (2014)

    Article  Google Scholar 

  2. Ardagna, C., Damiani, E.: Network and storage latency attacks to online trading protocols in the cloud. In: Proceedings of the International Conference on Cloud Computing, Trusted Computing and Secure Virtual Infrastructures, Amantea, Italy, October 2014

    Google Scholar 

  3. Ardagna, C.A., Bellandi, V., Bezzi, M., Ceravolo, P., Damiani, E.: Model-driven methodology for big data analytics-as-a-service. In: Proceedings of the 6th IEEE International Congress on Big Data (BigData Congress 2017), Honolulu, HI, USA, June 2017

    Google Scholar 

  4. Ardagna, C.A., Ceravolo, P., Damiani, E.: Big data analytics as-a-service: issues and challenges. In: Proceedings of the IEEE International Conference on Big Data (Big Data 2016), Washington, DC, USA, December 2016

    Google Scholar 

  5. Austin, D.: eDiscovery Trends: CGOCs Information Lifecycle Governance Leader Reference Guide.

  6. Boettiger, C.: An introduction to docker for reproducible research. ACM SIGOPS Oper. Syst. Rev. 49(1), 71–79 (2015)

    Article  Google Scholar 

  7. Eckhoff, D., Sommer, C.: Driving for big data? privacy concerns in vehicular networking. IEEE Secur. Priv. 12(1), 77–79 (2014)

    Article  Google Scholar 

  8. Ekbia, H., Mattioli, M., Kouper, I., Arave, G., Ghazinejad, A., Bowman, T., Suri, V.R., Tsou, A., Weingart, S., Sugimoto, C.R.: Big data, bigger dilemmas: a critical review. J. Assoc. Inf. Sci. Technol. 66(8), 1523–1545 (2015)

    Article  Google Scholar 

  9. Commission, E.: Helping SMEs Fish the Big Data Ocean.

  10. IDC: Six patterns of big data and analytics adoption, March 2016.

  11. IDC: Worldwide Semiannual Big Data and Analytics Spending Guide, October 2016.

  12. Jagadish, H.V., Gehrke, J., Labrinidis, A., Papakonstantinou, Y., Patel, J.M., Ramakrishnan, R., Shahabi, C.: Big data and its technical challenges. Commun. ACM 57(7), 86–94 (2014)

    Article  Google Scholar 

  13. Lomotey, R.K., Deters, R.: Analytics-as-a-service framework for terms association mining in unstructured data. Int. J. Bus. Process Integr. Manage. (IJBPIM) 7(1), 49–61 (2014)

    Article  Google Scholar 

  14. Lu, R., Zhu, H., Liu, X., Liu, J.K., Shao, J.: Toward efficient and privacy-preserving computing in big data era. IEEE Netw. 28(4), 46–50 (2014)

    Article  Google Scholar 

  15. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers, A.H.: Big data: the next frontier for innovation, competition, and productivity (2011).

  16. Markl, V.: Breaking the chains: On declarative data analysis and data independence in the big data era. Proc. VLDB Endow. 7(13), 1730–1733 (2014)

    Article  Google Scholar 

  17. Martin, D., Paolucci, M., McIlraith, S., Burstein, M., McDermott, D., McGuinness, D., Parsia, B., Payne, T., Sabou, M., Solanki, M., et al.: Bringing semantics to web services: the owl-s approach. In: Proceedings of the International Workshop on Semantic Web Services and Web Process Composition (SWSWPC 2004), San Diego, CA, USA, July 2004

    Google Scholar 

  18. Martin, K.E.: Ethical issues in the big data industry. MIS Q. Execut. 14, 2 (2015)

    Google Scholar 

  19. Prud, E., Seaborne, A., et al.: SPARQL query language for RDF (2006)

    Google Scholar 

  20. Rahman, N.: Factors affecting big data technology adoption (2016).

  21. Russom, P.: Big Data Analytics. TDWI best practices report, TDWI Research (2014).

  22. Salleh, K.A., Janczewski, L.: Adoption of big data solutions: a study on its security determinants using sec-toe framework. In: Proceedings of the International Conference on Information Resources Management (CONF-IRM 2016), Cape Town, South Africa, May 2016

    Google Scholar 

  23. Wu, D., Greer, M.J., Rosen, D.W., Schaefer, D.: Cloud manufacturing: strategic vision and state-of-the-art. J. Manufact. Syst. 32(4), 564–579 (2013)

    Article  Google Scholar 

Download references


This work has received funding from the European Union’s Horizon 2020 research and innovation programme under the TOREADOR project, grant agreement No. 688797. It was also partly supported by the program “piano sostegno alla ricerca 2016” funded by Università degli Studi di Milano.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ernesto Damiani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Damiani, E., Ardagna, C., Ceravolo, P., Scarabottolo, N. (2017). Toward Model-Based Big Data-as-a-Service: The TOREADOR Approach. In: Kirikova, M., Nørvåg, K., Papadopoulos, G. (eds) Advances in Databases and Information Systems. ADBIS 2017. Lecture Notes in Computer Science(), vol 10509. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66916-8

  • Online ISBN: 978-3-319-66917-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics