Toward Model-Based Big Data-as-a-Service: The TOREADOR Approach

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10509)


The full potential of Big Data Analytics (BDA) can be unleashed only by overcoming hurdles like the high architectural complexity and lack of transparency of Big Data toolkits, as well as the high cost and lack of legal clearance of data collection, access and processing procedures. We first discuss the notion of Big Data Analytics-as-a-Service (BDAaaS) to help potential users of BDA in overcoming such hurdles. We then present TOREADOR, a first approach to BDAaaS.


Bullfighter Legal Clearance Privacy Impact Assessment Declarative Model Abstract Service Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has received funding from the European Union’s Horizon 2020 research and innovation programme under the TOREADOR project, grant agreement No. 688797. It was also partly supported by the program “piano sostegno alla ricerca 2016” funded by Università degli Studi di Milano.


  1. 1.
    Abadi, D., Agrawal, R., Ailamaki, A., Balazinska, M., Bernstein, P.A., Carey, M.J., Chaudhuri, S., Dean, J., Doan, A., Franklin, M.J., Gehrke, J., Haas, L.M., Halevy, A.Y., Hellerstein, J.M., Ioannidis, Y.E., Jagadish, H.V., Kossmann, D., Madden, S., Mehrotra, S., Milo, T., Naughton, J.F., Ramakrishnan, R., Markl, V., Olston, C., Ooi, B.C., Ré, C., Suciu, D., Stonebraker, M., Walter, T., Widom, J.: The beckman report on database research. ACM SIGMOD Rec. 43(3), 61–70 (2014)CrossRefGoogle Scholar
  2. 2.
    Ardagna, C., Damiani, E.: Network and storage latency attacks to online trading protocols in the cloud. In: Proceedings of the International Conference on Cloud Computing, Trusted Computing and Secure Virtual Infrastructures, Amantea, Italy, October 2014Google Scholar
  3. 3.
    Ardagna, C.A., Bellandi, V., Bezzi, M., Ceravolo, P., Damiani, E.: Model-driven methodology for big data analytics-as-a-service. In: Proceedings of the 6th IEEE International Congress on Big Data (BigData Congress 2017), Honolulu, HI, USA, June 2017Google Scholar
  4. 4.
    Ardagna, C.A., Ceravolo, P., Damiani, E.: Big data analytics as-a-service: issues and challenges. In: Proceedings of the IEEE International Conference on Big Data (Big Data 2016), Washington, DC, USA, December 2016Google Scholar
  5. 5.
    Austin, D.: eDiscovery Trends: CGOCs Information Lifecycle Governance Leader Reference Guide.
  6. 6.
    Boettiger, C.: An introduction to docker for reproducible research. ACM SIGOPS Oper. Syst. Rev. 49(1), 71–79 (2015)CrossRefGoogle Scholar
  7. 7.
    Eckhoff, D., Sommer, C.: Driving for big data? privacy concerns in vehicular networking. IEEE Secur. Priv. 12(1), 77–79 (2014)CrossRefGoogle Scholar
  8. 8.
    Ekbia, H., Mattioli, M., Kouper, I., Arave, G., Ghazinejad, A., Bowman, T., Suri, V.R., Tsou, A., Weingart, S., Sugimoto, C.R.: Big data, bigger dilemmas: a critical review. J. Assoc. Inf. Sci. Technol. 66(8), 1523–1545 (2015)CrossRefGoogle Scholar
  9. 9.
    Commission, E.: Helping SMEs Fish the Big Data Ocean.
  10. 10.
    IDC: Six patterns of big data and analytics adoption, March 2016.
  11. 11.
    IDC: Worldwide Semiannual Big Data and Analytics Spending Guide, October 2016.
  12. 12.
    Jagadish, H.V., Gehrke, J., Labrinidis, A., Papakonstantinou, Y., Patel, J.M., Ramakrishnan, R., Shahabi, C.: Big data and its technical challenges. Commun. ACM 57(7), 86–94 (2014)CrossRefGoogle Scholar
  13. 13.
    Lomotey, R.K., Deters, R.: Analytics-as-a-service framework for terms association mining in unstructured data. Int. J. Bus. Process Integr. Manage. (IJBPIM) 7(1), 49–61 (2014)CrossRefGoogle Scholar
  14. 14.
    Lu, R., Zhu, H., Liu, X., Liu, J.K., Shao, J.: Toward efficient and privacy-preserving computing in big data era. IEEE Netw. 28(4), 46–50 (2014)CrossRefGoogle Scholar
  15. 15.
    Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers, A.H.: Big data: the next frontier for innovation, competition, and productivity (2011).
  16. 16.
    Markl, V.: Breaking the chains: On declarative data analysis and data independence in the big data era. Proc. VLDB Endow. 7(13), 1730–1733 (2014)CrossRefGoogle Scholar
  17. 17.
    Martin, D., Paolucci, M., McIlraith, S., Burstein, M., McDermott, D., McGuinness, D., Parsia, B., Payne, T., Sabou, M., Solanki, M., et al.: Bringing semantics to web services: the owl-s approach. In: Proceedings of the International Workshop on Semantic Web Services and Web Process Composition (SWSWPC 2004), San Diego, CA, USA, July 2004Google Scholar
  18. 18.
    Martin, K.E.: Ethical issues in the big data industry. MIS Q. Execut. 14, 2 (2015)Google Scholar
  19. 19.
    Prud, E., Seaborne, A., et al.: SPARQL query language for RDF (2006)Google Scholar
  20. 20.
    Rahman, N.: Factors affecting big data technology adoption (2016).
  21. 21.
    Russom, P.: Big Data Analytics. TDWI best practices report, TDWI Research (2014).
  22. 22.
    Salleh, K.A., Janczewski, L.: Adoption of big data solutions: a study on its security determinants using sec-toe framework. In: Proceedings of the International Conference on Information Resources Management (CONF-IRM 2016), Cape Town, South Africa, May 2016Google Scholar
  23. 23.
    Wu, D., Greer, M.J., Rosen, D.W., Schaefer, D.: Cloud manufacturing: strategic vision and state-of-the-art. J. Manufact. Syst. 32(4), 564–579 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Consorzio Interuniversitario Nazionale per l’InformaticaRomeItaly
  2. 2.EBTIC/Khalifa University of Science and TechnologyAbu DhabiUAE
  3. 3.Università degli Studi di MilanoMilanItaly

Personalised recommendations