Hypersequent Calculi for Lewis’ Conditional Logics with Uniformity and Reflexivity

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10501)


We present the first internal calculi for Lewis’ conditional logics characterized by uniformity and reflexivity, including non-standard internal hypersequent calculi for a number of extensions of the logic \(\mathbb {V}\mathbb {T}\mathbb {U}\). These calculi allow for syntactic proofs of cut elimination and known connections to \(\mathsf {S5}\). We then introduce standard internal hypersequent calculi for all these logics, in which sequents are enriched by additional structures to encode plausibility formulas as well as diamond formulas. These calculi provide both a decision procedure for the respective logics and constructive countermodel extraction from a failed proof search attempt.


  1. 1.
    Alenda, R., Olivetti, N.: Preferential semantics for the logic of comparative similarity over triangular and metric models. In: Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS (LNAI), vol. 7519, pp. 1–13. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33353-8_1 CrossRefGoogle Scholar
  2. 2.
    Avron, A.: The method of hypersequents in the proof theory of propositional non-classical logics. In: Hodges, W., Hyland, M., Steinhorn, C., Truss, J. (eds.) Logic: From Foundations to Applications. Clarendon Press, New York (1996)Google Scholar
  3. 3.
    Burgess, J.P.: Quick completeness proofs for some logics of conditionals. Notre Dame J. Formal Log. 22, 76–84 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Chellas, B.F.: Basic conditional logics. J. Philos. Log. 4, 133–153 (1975)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Friedman, N., Halpern, J.Y.: On the complexity of conditional logics. In: Doyle, J., Sandewall, E., Torasso, P. (eds.) KR 1994, pp. 202–213. Morgan Kaufmann (1994)Google Scholar
  6. 6.
    Giordano, L., Gliozzi, V., Olivetti, N., Schwind, C.: Tableau calculus for preference-based conditional logics: PCL and its extensions. ACM TOCL 10(3), 21:1–21:50 (2009)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Girlando, M., Lellmann, B., Olivetti, N., Pozzato, G.L.: Standard sequent calculi for Lewis’ logics of counterfactuals. In: Michael, L., Kakas, A. (eds.) JELIA 2016. LNCS, vol. 10021, pp. 272–287. Springer, Cham (2016). doi: 10.1007/978-3-319-48758-8_18 CrossRefGoogle Scholar
  8. 8.
    Grahne, G.: Updates and counterfactuals. J. Log. Comput. 8(1), 87–117 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artif. Intell. 44(1–2), 167–207 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Kuznets, R., Lellmann, B.: Grafting hypersequents onto nested sequents. Log. J. IGPL 24, 375–423 (2016)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Lellmann, B.: Hypersequent rules with restricted contexts for propositional modal logics. Theoret. Comput. Sci. 656, 76–105 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Lellmann, B., Pattinson, D.: Sequent systems for Lewis’ conditional logics. In: Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS, vol. 7519, pp. 320–332. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33353-8_25 CrossRefGoogle Scholar
  13. 13.
    Lewis, D.: Counterfactuals. Blackwell, London (1973)zbMATHGoogle Scholar
  14. 14.
    Nute, D.: Topics in Conditional Logic. Reidel, Dordrecht (1980)CrossRefzbMATHGoogle Scholar
  15. 15.
    Olivetti, N., Pozzato, G.L.: A standard internal calculus for Lewis’ counterfactual logics. In: Nivelle, H. (ed.) TABLEAUX 2015. LNCS, vol. 9323, pp. 270–286. Springer, Cham (2015). doi: 10.1007/978-3-319-24312-2_19 CrossRefGoogle Scholar
  16. 16.
    Restall, G.: Proofnets for S5: sequents and circuits for modal logic. In: Logic Colloquium 2005. Lecture Notes in Logic, vol. 28, pp. 151–172. Cambridge University Press (2007)Google Scholar
  17. 17.
    Sheremet, M., Tishkovsky, D., Wolter, F., Zakharyaschev, M.: A logic for concepts and similarity. J. Log. Comput. 17(3), 415–452 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Stalnaker, R.: A theory of conditionals. In: Rescher, N. (ed.) Studies in Logical Theory, pp. 98–112. Blackwell (1968)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Aix Marseille Université, CNRS, ENSAM, Université de Toulon, LSIS UMR 7296MarseilleFrance
  2. 2.Technische Universität WienViennaAustria
  3. 3.Dip. di InformaticaUniversitá di TorinoTurinItaly

Personalised recommendations