On the Decidability of Certain Semi-Lattice Based Modal Logics

  • Katalin Bimbó
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10501)


Sequent calculi are proof systems that are exceptionally suitable for proving the decidability of a logic. Several relevance logics were proved decidable using a technique attributable to Curry and Kripke. Further enhancements led to a proof of the decidability of implicational ticket entailment by Bimbó and Dunn in [12, 13]. This paper uses a different adaptation of the same core proof technique to prove a group of positive modal logics (with disjunction but no conjunction) decidable.


Sequent calculi Modal logic Decidability Relevance logic Heap number Semi-lattice based logic 



I am grateful to the organizers of the TABLEAUX, FroCoS and ITP conferences for their invitation for me to speak at those conferences, which triggered the writing of this paper.

I would also like to thank the program committee for helpful comments on the first version of this paper.


  1. 1.
    Anderson, A.R., Belnap, N.D.: Entailment: The Logic of Relevance and Necessity, vol. I. Princeton University Press, Princeton (1975)zbMATHGoogle Scholar
  2. 2.
    Anderson, A.R., Belnap, N.D., Dunn, J.M.: Entailment: The Logic of Relevance and Necessity, vol. II. Princeton University Press, Princeton (1992)zbMATHGoogle Scholar
  3. 3.
    Belnap, N.D.: Display logic. J. Philos. Logic 11, 375–417 (1982)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Belnap, N.D., Wallace, J.R.: A decision procedure for the system \(E_{\overline{I}}\) of entailment with negation. Technical report 11, Contract No. SAR/609 (16), Office of Naval Research, New Haven (1961)Google Scholar
  5. 5.
    Belnap, N.D., Wallace, J.R.: A decision procedure for the system \(E_{\overline{I}}\) of entailment with negation. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 11, 277–289 (1965)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Bimbó, K.: Admissibility of cut in \({LC}\) with fixed point combinator. Stud. Logica 81, 399–423 (2005). CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Bimbó, K.: \(LE^{\,t}_\rightarrow \), \({LR^{^{_{\scriptstyle \circ }}}_{\overset{\scriptscriptstyle \wedge }{\scriptscriptstyle \sim }}}\), \(LK\) and cutfree proofs. J. Philos. Logic 36, 557–570 (2007). CrossRefMathSciNetGoogle Scholar
  8. 8.
    Bimbó, K.: The decidability of the intensional fragment of classical linear logic. Theoret. Comput. Sci. 597, 1–17 (2015). CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Bimbó, K.: Proof Theory: Sequent Calculi and Related Formalisms. Discrete Mathematics and Its Applications. CRC Press, Boca Raton (2015). zbMATHGoogle Scholar
  10. 10.
    Bimbó, K., Dunn, J.M.: Generalized Galois Logics: Relational Semantics of Nonclassical Logical Calculi. CSLI Lecture Notes, vol. 188. CSLI Publications, Stanford (2008)zbMATHGoogle Scholar
  11. 11.
    Bimbó, K., Dunn, J.M.: Calculi for symmetric generalized Galois logics. In: van Benthem, J., Moortgat, M. (eds.) Festschrift for Joachim Lambek. Linguistic Analysis, vol. 36, pp. 307–343. Linguistic Analysis, Vashon (2010)Google Scholar
  12. 12.
    Bimbó, K., Dunn, J.M.: New consecution calculi for \(R_\rightarrow ^{\, {t}}\). Notre Dame J. Formal Logic 53(4), 491–509 (2012). CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Bimbó, K., Dunn, J.M.: On the decidability of implicational ticket entailment. J. Symb. Logic 78(1), 214–236 (2013). CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Bimbó, K., Dunn, J.M.: Modalities in lattice-\(R\) (2015). (manuscript, 34 pages)Google Scholar
  15. 15.
    Cresswell, M., Mares, E., Rini, A. (eds.): Logical Modalities from Aristotle to Carnap. The Story of Necessity. Cambridge University Press, Cambridge (2016)zbMATHGoogle Scholar
  16. 16.
    Curry, H.B.: A Theory of Formal Deducibility. No. 6 in Notre Dame Mathematical Lectures. University of Notre Dame Press, Notre Dame (1950)Google Scholar
  17. 17.
    Curry, H.B.: Foundations of Mathematical Logic. McGraw-Hill Book Company, New York (1963). (Dover, New York, 1977)zbMATHGoogle Scholar
  18. 18.
    Dunn, J.M.: A ‘Gentzen system’ for positive relevant implication (abstract). J. Symb. Logic 38, 356–357 (1973)Google Scholar
  19. 19.
    Dunn, J.M.: Relevance logic and entailment. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 3, 1st edn, pp. 117–224. D. Reidel, Dordrecht (1986)CrossRefGoogle Scholar
  20. 20.
    Dunn, J.M.: Positive modal logic. Stud. Logica. 55, 301–317 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Dunn, J.M., Meyer, R.K.: Combinators and structurally free logic. Logic J. IGPL 5, 505–537 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Dunn, J.M., Restall, G.: Relevance logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 6, 2nd edn, pp. 1–128. Kluwer, Amsterdam (2002)Google Scholar
  23. 23.
    Gentzen, G.: Untersuchungen über das logische Schließen. Mathematische Zeitschrift 39, 176–210 (1935)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Gödel, K.: Eine Interpretation des intuitionistischen Aussagenkalküls. In: Feferman, S. (ed.) Collected Works, vol. I, pp. 300–303. Oxford University Press and Clarendon Press, New York and Oxford (1986)Google Scholar
  25. 25.
    Kopylov, A.P.: Decidability of linear affine logic. In: Meyer, A.R. (ed.) Special issue: LICS 1995, Information and Computation, vol. 164, pp. 173–198. IEEE (2001)Google Scholar
  26. 26.
    Kripke, S.A.: The problem of entailment (abstract). J. Symb. Logic 24, 324 (1959)CrossRefGoogle Scholar
  27. 27.
    Kripke, S.A.: Semantical analysis of modal logic I. Normal modal propositional calculi. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, pp. 67–96 (1963)Google Scholar
  28. 28.
    Lambek, J.: The mathematics of sentence structure. Am. Math. Mon. 65, 154–169 (1958)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Lewis, C.I.: A Survey of Symbolic Logic. University of California Press, Berkeley (1918). (Dover Publications, Mineola, 1960)Google Scholar
  30. 30.
    Meyer, R.K.: Topics in modal and many-valued logic. Ph.D. thesis, University of Pittsburgh, Ann Arbor (UMI) (1966)Google Scholar
  31. 31.
    Meyer, R.K.: Improved decision procedures for pure relevant logic. In: Anderson, C.A., Zelëny, M. (eds.) Logic, Meaning and Computation: Essays in Memory of Alonzo Church, pp. 191–217. Kluwer Academic Publishers, Dordrecht (2001)CrossRefGoogle Scholar
  32. 32.
    Smullyan, R.M.: First-Order Logic. Springer, New York (1968). (Dover, New York 1995)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of AlbertaEdmontonCanada

Personalised recommendations