Skip to main content

Interleukin-17 Inhibition for the Treatment of Inflammatory Skin Disease

  • Chapter
  • First Online:
Biologic and Systemic Agents in Dermatology

Abstract

Psoriasis is a chronic inflammatory skin condition characterized by thick, erythematous, scaly plaques. While the etiology of this skin condition has not been fully elucidated, research has unequivocally shown that psoriasis represents a bona fide T cell-mediated disease. The recent discovery of a set of pathogenic T cells that produce high levels of interleukin-17 in response to interleukin-23 led to a major paradigm shift in the pathogenic model for this condition. The astonishing phase III clinical trial results for three novel monoclonal antibodies against interleukin-17 (secukinumab, ixekizumab, and brodalumab) underscore the central role of this cytokine as the predominant driver of psoriatic disease. The role of interleukin-17 blockade for the treatment of other inflammatory skin conditions is not entirely clear, though early studies suggest that this class of medications represents a promising treatment strategy for several noninfectious lymphocytic and neutrophilic dermatoses, such as Sweet syndrome, Behçet disease, and atopic dermatitis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACR:

American College of Rheumatology

AD:

Atopic dermatitis

ADAMTSL5:

A disintegrin-like and metalloprotease domain containing thrombospondin type 1 motif-like 5

AMPs:

Antimicrobial peptides

C/EBP:

CCAAT-enhancer-binding protein

DLE:

Discoid lupus erythematosus

EAE:

Experimental autoimmune encephalomyelitis

IBD:

Inflammatory bowel disease

IL:

Interleukin

ILC:

Innate lymphoid cells

PASI:

Psoriasis Area and Severity Index

SCLE:

Subacute cutaneous lupus erythematosus

SLE:

Systemic lupus erythematosus

STAT1:

Signal transducer and activator of transcription 1

T17:

Interleukin-17-producing T cells

Tc17:

Interleukin-17-producing CD8+ T cells

Th:

T helper

References

  1. Rachakonda TD, Schupp CW, Armstrong AW. Psoriasis prevalence among adults in the United States. J Am Acad Dermatol. 2014;70(3):512–6. https://doi.org/10.1016/j.jaad.2013.11.013.

    Article  PubMed  Google Scholar 

  2. Martin DA, Towne JE, Kricorian G, Klekotka P, Gudjonsson JE, Krueger JG, et al. The emerging role of IL-17 in the pathogenesis of psoriasis: preclinical and clinical findings. J Invest Dermatol. 2013;133(1):17–26. https://doi.org/10.1038/jid.2012.194.

    Article  CAS  PubMed  Google Scholar 

  3. Lowes MA, Kikuchi T, Fuentes-Duculan J, Cardinale I, Zaba LC, Haider AS, et al. Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells. J Invest Dermatol. 2008;128(5):1207–11. https://doi.org/10.1038/sj.jid.5701213.

    Article  CAS  PubMed  Google Scholar 

  4. Res PC, Piskin G, de Boer OJ, van der Loos CM, Teeling P, Bos JD, et al. Overrepresentation of IL-17A and IL-22 producing CD8 T cells in lesional skin suggests their involvement in the pathogenesis of psoriasis. PLoS One. 2010;5(11):e14108. https://doi.org/10.1371/journal.pone.0014108.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ellis CN, Gorsulowsky DC, Hamilton TA, Billings JK, Brown MD, Headington JT, et al. Cyclosporine improves psoriasis in a double-blind study. JAMA. 1986;256(22):3110–6.

    Article  CAS  PubMed  Google Scholar 

  6. Mozzanica N, Cattaneo A, Pigatto PD, Finzi AF. Cyclosporine a in psoriasis: an immunohistological study. Transplant Proc. 1988;20(3 Suppl 4):78–84.

    CAS  PubMed  Google Scholar 

  7. Gottlieb SL, Gilleaudeau P, Johnson R, Estes L, Woodworth TG, Gottlieb AB, et al. Response of psoriasis to a lymphocyte-selective toxin (DAB389IL-2) suggests a primary immune, but not keratinocyte, pathogenic basis. Nat Med. 1995;1(5):442–7.

    Article  CAS  PubMed  Google Scholar 

  8. Abrams JR, Lebwohl MG, Guzzo CA, Jegasothy BV, Goldfarb MT, Goffe BS, et al. CTLA4Ig-mediated blockade of T-cell costimulation in patients with psoriasis vulgaris. J Clin Invest. 1999;103(9):1243–52. https://doi.org/10.1172/JCI5857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lebwohl M, Tyring SK, Hamilton TK, Toth D, Glazer S, Tawfik NH, et al. A novel targeted T-cell modulator, efalizumab, for plaque psoriasis. N Engl J Med. 2003;349(21):2004–13. https://doi.org/10.1056/NEJMoa030002.

    Article  CAS  PubMed  Google Scholar 

  10. Krueger GG, Callis KP. Development and use of alefacept to treat psoriasis. J Am Acad Dermatol. 2003;49(2 Suppl):S87–97. https://doi.org/10.1016/mjd.2003.552.

    Article  PubMed  Google Scholar 

  11. Austin LM, Ozawa M, Kikuchi T, Walters IB, Krueger JG. The majority of epidermal T cells in psoriasis vulgaris lesions can produce type 1 cytokines, interferon-gamma, interleukin-2, and tumor necrosis factor-alpha, defining TC1 (cytotoxic T lymphocyte) and TH1 effector populations: a type 1 differentiation bias is also measured in circulating blood T cells in psoriatic patients. J Invest Dermatol. 1999;113(5):752–9. https://doi.org/10.1046/j.1523-1747.1999.00749.x.

    Article  CAS  PubMed  Google Scholar 

  12. Yawalkar N, Karlen S, Hunger R, Brand CU, Braathen LR. Expression of interleukin-12 is increased in psoriatic skin. J Invest Dermatol. 1998;111(6):1053–7. https://doi.org/10.1046/j.1523-1747.1998.00446.x.

    Article  CAS  PubMed  Google Scholar 

  13. Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity. 2000;13(5):715–25.

    Article  CAS  PubMed  Google Scholar 

  14. Li J, Gran B, Zhang GX, Ventura ES, Siglienti I, Rostami A, et al. Differential expression and regulation of IL-23 and IL-12 subunits and receptors in adult mouse microglia. J Neurol Sci. 2003;215(1-2):95–103.

    Article  CAS  PubMed  Google Scholar 

  15. Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature. 2003;421(6924):744–8. https://doi.org/10.1038/nature01355.

    Article  CAS  PubMed  Google Scholar 

  16. Lowes MA, Suarez-Farinas M, Krueger JG. Immunology of psoriasis. Annu Rev Immunol. 2014;32:227–55. https://doi.org/10.1146/annurev-immunol-032713-120225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee E, Trepicchio WL, Oestreicher JL, Pittman D, Wang F, Chamian F, et al. Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris. J Exp Med. 2004;199(1):125–30. https://doi.org/10.1084/jem.20030451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Haider AS, Lowes MA, Suarez-Farinas M, Zaba LC, Cardinale I, Khatcherian A, et al. Identification of cellular pathways of “type 1,” Th17 T cells, and TNF- and inducible nitric oxide synthase-producing dendritic cells in autoimmune inflammation through pharmacogenomic study of cyclosporine a in psoriasis. J Immunol. 2008;180(3):1913–20.

    Article  CAS  PubMed  Google Scholar 

  19. Wolk K, Witte E, Wallace E, Docke WD, Kunz S, Asadullah K, et al. IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis. Eur J Immunol. 2006;36(5):1309–23. https://doi.org/10.1002/eji.200535503.

    Article  CAS  PubMed  Google Scholar 

  20. Ma HL, Liang S, Li J, Napierata L, Brown T, Benoit S, et al. IL-22 is required for Th17 cell-mediated pathology in a mouse model of psoriasis-like skin inflammation. J Clin Invest. 2008;118(2):597–607. https://doi.org/10.1172/JCI33263.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lowes MA, Bowcock AM, Krueger JG. Pathogenesis and therapy of psoriasis. Nature. 2007;445(7130):866–73. https://doi.org/10.1038/nature05663.

    Article  CAS  PubMed  Google Scholar 

  22. Leonardi CL, Kimball AB, Papp KA, Yeilding N, Guzzo C, Wang Y, et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet. 2008;371(9625):1665–74. https://doi.org/10.1016/S0140-6736(08)60725-4.

    Article  CAS  PubMed  Google Scholar 

  23. Zaba LC, Cardinale I, Gilleaudeau P, Sullivan-Whalen M, Suarez-Farinas M, Fuentes-Duculan J, et al. Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J Exp Med. 2007;204(13):3183–94. https://doi.org/10.1084/jem.20071094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Harden JL, Johnson-Huang LM, Chamian MF, Lee E, Pearce T, Leonardi CL, et al. Humanized anti-IFN-gamma (HuZAF) in the treatment of psoriasis. J Allergy Clin Immunol. 2015;135(2):553–6. https://doi.org/10.1016/j.jaci.2014.05.046.

    Article  CAS  PubMed  Google Scholar 

  25. Gaffen SL. Structure and signalling in the IL-17 receptor family. Nat Rev Immunol. 2009;9(8):556–67. https://doi.org/10.1038/nri2586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Russell C, Kerkof K, Bigler J, Timour M, Welcher A, Novitskaya I, et al. Blockade of the IL-17R with AMG 827 leads to rapid reversal of gene expression and histopathologic abnormalities in human psoriatic skin (abstract 273). J Invest Dermatol. 2010;130(Suppl 1):S46. https://doi.org/10.1038/jid.2010.71.

    Google Scholar 

  27. Russell CB, Rand H, Bigler J, Kerkof K, Timour M, Bautista E, et al. Gene expression profiles normalized in psoriatic skin by treatment with brodalumab, a human anti-IL-17 receptor monoclonal antibody. J Immunol. 2014;192(8):3828–36. https://doi.org/10.4049/jimmunol.1301737.

    Article  CAS  PubMed  Google Scholar 

  28. Hueber W, Patel DD, Dryja T, Wright AM, Koroleva I, Bruin G, et al. Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis. Sci Transl Med. 2010;2(52):52ra72. https://doi.org/10.1126/scitranslmed.3001107.

    Article  PubMed  Google Scholar 

  29. Krueger JG, Fretzin S, Suarez-Farinas M, Haslett PA, Phipps KM, Cameron GS, et al. IL-17A is essential for cell activation and inflammatory gene circuits in subjects with psoriasis. J Allergy Clin Immunol. 2012;130(1):145–54.e9. https://doi.org/10.1016/j.jaci.2012.04.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Leonardi C, Matheson R, Zachariae C, Cameron G, Li L, Edson-Heredia E, et al. Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis. N Engl J Med. 2012;366(13):1190–9. https://doi.org/10.1056/NEJMoa1109997.

    Article  CAS  PubMed  Google Scholar 

  31. Papp KA, Leonardi C, Menter A, Ortonne JP, Krueger JG, Kricorian G, et al. Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis. N Engl J Med. 2012;366(13):1181–9. https://doi.org/10.1056/NEJMoa1109017.

    Article  CAS  PubMed  Google Scholar 

  32. Langley RG, Elewski BE, Lebwohl M, Reich K, Griffiths CE, Papp K, et al. Secukinumab in plaque psoriasis—results of two phase 3 trials. N Engl J Med. 2014;371(4):326–38. https://doi.org/10.1056/NEJMoa1314258.

    Article  PubMed  Google Scholar 

  33. Kim J, Krueger JG. Highly effective new treatments for psoriasis target the IL-23/type 17 T cell autoimmune axis. Annu Rev Med. 2017;68:255–69. https://doi.org/10.1146/annurev-med-042915-103905.

    Article  CAS  PubMed  Google Scholar 

  34. Suarez-Farinas M, Li K, Fuentes-Duculan J, Hayden K, Brodmerkel C, Krueger JG. Expanding the psoriasis disease profile: interrogation of the skin and serum of patients with moderate-to-severe psoriasis. J Invest Dermatol. 2012;132(11):2552–64. https://doi.org/10.1038/jid.2012.184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chiricozzi A, Nograles KE, Johnson-Huang LM, Fuentes-Duculan J, Cardinale I, Bonifacio KM, et al. IL-17 induces an expanded range of downstream genes in reconstituted human epidermis model. PLoS One. 2014;9(2):e90284. https://doi.org/10.1371/journal.pone.0090284.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chiricozzi A, Guttman-Yassky E, Suarez-Farinas M, Nograles KE, Tian S, Cardinale I, et al. Integrative responses to IL-17 and TNF-alpha in human keratinocytes account for key inflammatory pathogenic circuits in psoriasis. J Invest Dermatol. 2011;131(3):677–87. https://doi.org/10.1038/jid.2010.340.

    Article  CAS  PubMed  Google Scholar 

  37. Arakawa A, Siewert K, Stohr J, Besgen P, Kim SM, Ruhl G, et al. Melanocyte antigen triggers autoimmunity in human psoriasis. J Exp Med. 2015;212(13):2203–12. https://doi.org/10.1084/jem.20151093.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bonifacio KM, Kunjravia N, Krueger JG, Fuentes-Duculan J. Cutaneous expression of a disintegrin-like and metalloprotease domain containing thrombospondin type 1 motif-like 5 (ADAMTSL5) in psoriasis goes beyond melanocytes. J Pigment Disord. 2016;3(3):244. https://doi.org/10.4172/2376-0427.1000244.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cheung KL, Jarrett R, Subramaniam S, Salimi M, Gutowska-Owsiak D, Chen YL, et al. Psoriatic T cells recognize neolipid antigens generated by mast cell phospholipase delivered by exosomes and presented by CD1a. J Exp Med. 2016;213(11):2399–412. https://doi.org/10.1084/jem.20160258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lande R, Botti E, Jandus C, Dojcinovic D, Fanelli G, Conrad C, et al. The antimicrobial peptide LL37 is a T-cell autoantigen in psoriasis. Nat Commun. 2014;5:5621. https://doi.org/10.1038/ncomms6621.

    Article  CAS  PubMed  Google Scholar 

  41. Sofen H, Smith S, Matheson RT, Leonardi CL, Calderon C, Brodmerkel C, et al. Guselkumab (an IL-23-specific mAb) demonstrates clinical and molecular response in patients with moderate-to-severe psoriasis. J Allergy Clin Immunol. 2014;133(4):1032–40. https://doi.org/10.1016/j.jaci.2014.01.025.

    Article  CAS  PubMed  Google Scholar 

  42. Gagliani N, Amezcua Vesely MC, Iseppon A, Brockmann L, Xu H, Palm NW, et al. Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature. 2015;523(7559):221–5. https://doi.org/10.1038/nature14452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jager A, Kuchroo VK. Effector and regulatory T-cell subsets in autoimmunity and tissue inflammation. Scand J Immunol. 2010;72(3):173–84. https://doi.org/10.1111/j.1365-3083.2010.02432.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Krueger JG, Ferris LK, Menter A, Wagner F, White A, Visvanathan S, et al. Anti-IL-23A mAb BI 655066 for treatment of moderate-to-severe psoriasis: safety, efficacy, pharmacokinetics, and biomarker results of a single-rising-dose, randomized, double-blind, placebo-controlled trial. J Allergy Clin Immunol. 2015;136(1):116–24.e7. https://doi.org/10.1016/j.jaci.2015.01.018.

    Article  CAS  PubMed  Google Scholar 

  45. Thaci D, Blauvelt A, Reich K, Tsai TF, Vanaclocha F, Kingo K, et al. Secukinumab is superior to ustekinumab in clearing skin of subjects with moderate to severe plaque psoriasis: CLEAR, a randomized controlled trial. J Am Acad Dermatol. 2015;73(3):400–9. https://doi.org/10.1016/j.jaad.2015.05.013.

    Article  CAS  PubMed  Google Scholar 

  46. Blauvelt A, Reich K, Tsai TF, Tyring S, Vanaclocha F, Kingo K, et al. Secukinumab is superior to ustekinumab in clearing skin of subjects with moderate-to-severe plaque psoriasis up to 1 year: results from the CLEAR study. J Am Acad Dermatol. 2017;76(1):60–9.e9. https://doi.org/10.1016/j.jaad.2016.08.008.

    Article  CAS  PubMed  Google Scholar 

  47. Paul C, Lacour JP, Tedremets L, Kreutzer K, Jazayeri S, Adams S, et al. Efficacy, safety and usability of secukinumab administration by autoinjector/pen in psoriasis: a randomized, controlled trial (JUNCTURE). J Eur Acad Dermatol Venereol. 2015;29(6):1082–90. https://doi.org/10.1111/jdv.12751.

    Article  CAS  PubMed  Google Scholar 

  48. Blauvelt A, Prinz JC, Gottlieb AB, Kingo K, Sofen H, Ruer-Mulard M, et al. Secukinumab administration by pre-filled syringe: efficacy, safety and usability results from a randomized controlled trial in psoriasis (FEATURE). Br J Dermatol. 2015;172(2):484–93. https://doi.org/10.1111/bjd.13348.

    Article  CAS  PubMed  Google Scholar 

  49. Mease PJ, McInnes IB, Kirkham B, Kavanaugh A, Rahman P, van der Heijde D, et al. Secukinumab inhibition of interleukin-17A in patients with psoriatic arthritis. N Engl J Med. 2015;373(14):1329–39. https://doi.org/10.1056/NEJMoa1412679.

    Article  CAS  PubMed  Google Scholar 

  50. McInnes IB, Mease PJ, Kirkham B, Kavanaugh A, Ritchlin CT, Rahman P, et al. Secukinumab, a human anti-interleukin-17A monoclonal antibody, in patients with psoriatic arthritis (FUTURE 2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2015;386(9999):1137–46. https://doi.org/10.1016/S0140-6736(15)61134-5.

    Article  CAS  PubMed  Google Scholar 

  51. Gordon KB, Blauvelt A, Papp KA, Langley RG, Luger T, Ohtsuki M, et al. Phase 3 trials of ixekizumab in moderate-to-severe plaque psoriasis. N Engl J Med. 2016;375(4):345–56. https://doi.org/10.1056/NEJMoa1512711.

    Article  CAS  PubMed  Google Scholar 

  52. Griffiths CE, Reich K, Lebwohl M, van de Kerkhof P, Paul C, Menter A, et al. Comparison of ixekizumab with etanercept or placebo in moderate-to-severe psoriasis (UNCOVER-2 and UNCOVER-3): results from two phase 3 randomised trials. Lancet. 2015;386(9993):541–51. https://doi.org/10.1016/S0140-6736(15)60125-8.

    Article  CAS  PubMed  Google Scholar 

  53. Mease PJ, van der Heijde D, Ritchlin CT, Okada M, Cuchacovich RS, Shuler CL, et al. Ixekizumab, an interleukin-17A specific monoclonal antibody, for the treatment of biologic-naive patients with active psoriatic arthritis: results from the 24-week randomised, double-blind, placebo-controlled and active (adalimumab)-controlled period of the phase III trial SPIRIT-P1. Ann Rheum Dis. 2017;76(1):79–87. https://doi.org/10.1136/annrheumdis-2016-209709.

    Article  PubMed  Google Scholar 

  54. Papp KA, Reich K, Paul C, Blauvelt A, Baran W, Bolduc C, et al. A prospective phase III, randomized, double-blind, placebo-controlled study of brodalumab in patients with moderate-to-severe plaque psoriasis. Br J Dermatol. 2016;175(2):273–86. https://doi.org/10.1111/bjd.14493.

    Article  CAS  PubMed  Google Scholar 

  55. Lebwohl M, Strober B, Menter A, Gordon K, Weglowska J, Puig L, et al. Phase 3 studies comparing brodalumab with ustekinumab in psoriasis. N Engl J Med. 2015;373(14):1318–28. https://doi.org/10.1056/NEJMoa1503824.

    Article  PubMed  Google Scholar 

  56. Puel A, Cypowyj S, Bustamante J, Wright JF, Liu L, Lim HK, et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science. 2011;332(6025):65–8. https://doi.org/10.1126/science.1200439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hueber W, Sands BE, Lewitzky S, Vandemeulebroecke M, Reinisch W, Higgins PD, et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut. 2012;61(12):1693–700. https://doi.org/10.1136/gutjnl-2011-301668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Targan SR, Feagan B, Vermeire S, Panaccione R, Melmed GY, Landers C, et al. A randomized, double-blind, placebo-controlled phase 2 study of brodalumab in patients with moderate-to-severe Crohn’s disease. Am J Gastroenterol. 2016;111(11):1599–607. https://doi.org/10.1038/ajg.2016.298.

    Article  CAS  PubMed  Google Scholar 

  59. Johansen C, Usher PA, Kjellerup RB, Lundsgaard D, Iversen L, Kragballe K. Characterization of the interleukin-17 isoforms and receptors in lesional psoriatic skin. Br J Dermatol. 2009;160(2):319–24. https://doi.org/10.1111/j.1365-2133.2008.08902.x.

    Article  CAS  PubMed  Google Scholar 

  60. van Baarsen LG, Lebre MC, van der Coelen D, Aarrass S, Tang MW, Ramwadhdoebe TH, et al. Heterogeneous expression pattern of interleukin 17A (IL-17A), IL-17F and their receptors in synovium of rheumatoid arthritis, psoriatic arthritis and osteoarthritis: possible explanation for nonresponse to anti-IL-17 therapy? Arthritis Res Ther. 2014;16(4):426. https://doi.org/10.1186/s13075-014-0426-z.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Torres T, Romanelli M, Chiricozzi A. A revolutionary therapeutic approach for psoriasis: bispecific biological agents. Expert Opin Investig Drugs. 2016;25(7):751–4. https://doi.org/10.1080/13543784.2016.1187130.

    Article  CAS  PubMed  Google Scholar 

  62. Silacci M, Lembke W, Woods R, Attinger-Toller I, Baenziger-Tobler N, Batey S, et al. Discovery and characterization of COVA322, a clinical-stage bispecific TNF/IL-17A inhibitor for the treatment of inflammatory diseases. MAbs. 2016;8(1):141–9. https://doi.org/10.1080/19420862.2015.1093266.

    Article  CAS  PubMed  Google Scholar 

  63. Walker G, Croasdell G. The European league against rheumatism (EULAR)—17th annual European congress of rheumatology (June 8-11, 2016 - London, UK). Drugs Today (Barc). 2016;52(6):355–60. https://doi.org/10.1358/dot.2016.52.6.2516435.

    Article  CAS  Google Scholar 

  64. Alexander W. European league against rheumatism and american diabetes association. P T. 2016;41(8):517–22.

    PubMed  PubMed Central  Google Scholar 

  65. 2016 ACR/ARHP. Annual meeting abstract supplement. Arthritis Rheum. 2016;68(Suppl 10):1–4550. https://doi.org/10.1002/art.39977.

    Google Scholar 

  66. Glatt S, Helmer E, Haier B, Strimenopoulou F, Price G, Vajjah P, et al. First-in-human randomized study of bimekizumab, a humanized monoclonal antibody and selective dual inhibitor of IL-17A and IL-17F, in mild psoriasis. Br J Clin Pharmacol. 2016. https://doi.org/10.1111/bcp.13185.

  67. Speeckaert R, Lambert J, Grine L, Van Gele M, De Schepper S, van Geel N. The many faces of interleukin-17 in inflammatory skin diseases. Br J Dermatol. 2016;175(5):892–901. https://doi.org/10.1111/bjd.14703.

    Article  CAS  PubMed  Google Scholar 

  68. Sakane T, Takeno M, Suzuki N, Inaba G. Behcet’s disease. N Engl J Med. 1999;341(17):1284–91. https://doi.org/10.1056/NEJM199910213411707.

    Article  CAS  PubMed  Google Scholar 

  69. Su WP, Davis MD, Weenig RH, Powell FC, Perry HO. Pyoderma gangrenosum: clinicopathologic correlation and proposed diagnostic criteria. Int J Dermatol. 2004;43(11):790–800. https://doi.org/10.1111/j.1365-4632.2004.02128.x.

    Article  PubMed  Google Scholar 

  70. Sweet RD. An acute febrile neutrophilic dermatosis. Br J Dermatol. 1964;76:349–56.

    Article  CAS  PubMed  Google Scholar 

  71. Marzano AV, Fanoni D, Antiga E, Quaglino P, Caproni M, Crosti C, et al. Expression of cytokines, chemokines and other effector molecules in two prototypic autoinflammatory skin diseases, pyoderma gangrenosum and Sweet’s syndrome. Clin Exp Immunol. 2014;178(1):48–56. https://doi.org/10.1111/cei.12394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ekinci NS, Alpsoy E, Karakas AA, Yilmaz SB, Yegin O. IL-17A has an important role in the acute attacks of Behcet’s disease. J Invest Dermatol. 2010;130(8):2136–8. https://doi.org/10.1038/jid.2010.114.

    Article  CAS  PubMed  Google Scholar 

  73. Lima AL, Karl I, Giner T, Poppe H, Schmidt M, Presser D, et al. Keratinocytes and neutrophils are important sources of proinflammatory molecules in hidradenitis suppurativa. Br J Dermatol. 2016;174(3):514–21. https://doi.org/10.1111/bjd.14214.

    Article  CAS  PubMed  Google Scholar 

  74. Cai S, Batra S, Langohr I, Iwakura Y, Jeyaseelan S. IFN-gamma induction by neutrophil-derived IL-17A homodimer augments pulmonary antibacterial defense. Mucosal Immunol. 2016;9(3):718–29. https://doi.org/10.1038/mi.2015.95.

    Article  CAS  PubMed  Google Scholar 

  75. Dick AD, Tugal-Tutkun I, Foster S, Zierhut M, Melissa Liew SH, Bezlyak V, et al. Secukinumab in the treatment of noninfectious uveitis: results of three randomized, controlled clinical trials. Ophthalmology. 2013;120(4):777–87. https://doi.org/10.1016/j.ophtha.2012.09.040.

    Article  PubMed  Google Scholar 

  76. Esaki H, Brunner PM, Renert-Yuval Y, Czarnowicki T, Huynh T, Tran G, et al. Early-onset pediatric atopic dermatitis is TH2 but also TH17 polarized in skin. J Allergy Clin Immunol. 2016;138(6):1639–51. https://doi.org/10.1016/j.jaci.2016.07.013.

    Article  CAS  PubMed  Google Scholar 

  77. Noda S, Suarez-Farinas M, Ungar B, Kim SJ, de Guzman SC, Xu H, et al. The Asian atopic dermatitis phenotype combines features of atopic dermatitis and psoriasis with increased TH17 polarization. J Allergy Clin Immunol. 2015;136(5):1254–64. https://doi.org/10.1016/j.jaci.2015.08.015.

    Article  CAS  PubMed  Google Scholar 

  78. Suarez-Farinas M, Dhingra N, Gittler J, Shemer A, Cardinale I, de Guzman SC, et al. Intrinsic atopic dermatitis shows similar TH2 and higher TH17 immune activation compared with extrinsic atopic dermatitis. J Allergy Clin Immunol. 2013;132(2):361–70. https://doi.org/10.1016/j.jaci.2013.04.046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tanasescu C, Balanescu E, Balanescu P, Olteanu R, Badea C, Grancea C, et al. IL-17 in cutaneous lupus erythematosus. Eur J Intern Med. 2010;21(3):202–7. https://doi.org/10.1016/j.ejim.2010.03.004.

    Article  CAS  PubMed  Google Scholar 

  80. Vincent FB, Northcott M, Hoi A, Mackay F, Morand EF. Clinical associations of serum interleukin-17 in systemic lupus erythematosus. Arthritis Res Ther. 2013;15(4):R97. https://doi.org/10.1186/ar4277.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

JEH, JAG, and JGK are supported in part by grant # UL1TR001866 and # KL2TR001865 from the National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH) Clinical and Translational Science Award (CTSA) program.

Conflict of Interest

JEH and JAG declare that they have no conflict of interest. JGK has been a consultant to and has received research support from companies that have developed or are developing therapeutics for psoriasis: AbbVie, Amgen, Boehringer, Bristol-Myers Squibb, Celgene, Dermira, Idera, Janssen, Leo, Lilly, Merck, Novartis, Pfizer, Regeneron, Sanofi, Serono, Sun, Valeant, and Vitae.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James G. Krueger MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Hawkes, J.E., Gonzalez, J.A., Krueger, J.G. (2018). Interleukin-17 Inhibition for the Treatment of Inflammatory Skin Disease. In: Yamauchi, P. (eds) Biologic and Systemic Agents in Dermatology. Springer, Cham. https://doi.org/10.1007/978-3-319-66884-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66884-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66883-3

  • Online ISBN: 978-3-319-66884-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics