Skip to main content

Manufacturing of Biologics

Abstract

Biologics have brought a new dimension to the treatment of chronic diseases. As compared to small molecules, biologics are created in living cells and thus the manufacturing of biologics is a complex process. This chapter discusses the multistep approach used to manufacture biotechnology-derived biologics. The chapter also discusses biosimilars and the complexity of their development and manufacturing along with highlighting the differences between two often-confused terms—biosimilarity and comparability.

This is a preview of subscription content, access via your institution.

Fig. 12.1
Fig. 12.2
Fig. 12.3
Fig. 12.4
Fig. 12.5
Fig. 12.6
Fig. 12.7
Fig. 12.8
Fig. 12.9

References

  1. Ereky K. Biotechnology of meat, fat and milk production in an agricultural large-scale farm. Berlin, Germany: P. Parey; 1919.

    Google Scholar 

  2. US FDA. Celebrating a milestone: FDA's approval of first genetically-engineered product. http://www.fda.gov/AboutFDA/WhatWeDo/History/ProductRegulation/SelectionsFromFDLIUpdateSeriesonFDAHistory/ucm081964.htm (2009). Accessed 9 Feb 2017.

  3. Astellas Pharm US announces discontinuation of manufacturing for Amevive [press release]. Available at http://www.the-dermatologist.com/content/astellas-pharma-us-announces-discontinuation-manufacturing-amevive. Accessed 1 Feb 2017.

  4. Amgen Inc. The power of biologics. Avaialble at http://www.amgenbiosimilars.com/the-basics/the-power-of-biologics/. Accessed 6 Feb 2017.

  5. Rathore N, Rajan RS. Current perspectives on stability of protein drug products during formulation, fill and finish operations. Biotechnol Prog. 2008;24(3):504–14.

    CAS  CrossRef  PubMed  Google Scholar 

  6. Ho K. Manufacturing process of biologics. International conference on harmonisation of technical requirements for registration of Pharmaceuticals for Human Use; May 30, 2011; Kuala Lumpur, Malaysia.

    Google Scholar 

  7. Lai T, Yang Y, Ng SK. Advances in mammalian cell line development technologies for recombinant protein production. Pharmaceuticals (Basel). 2013;6(5):579–603.

    CAS  CrossRef  Google Scholar 

  8. Arnold JN, Wormald MR, Sim RB, et al. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol. 2007;25:21–50.

    CAS  CrossRef  PubMed  Google Scholar 

  9. Dumont J, Euwart D, Mei B, et al. Human cell lines for biopharmaceutical manufacturing: history, status, and future perspectives. Crit Rev Biotechnol. 2016;36(6):1110–22.

    CAS  CrossRef  PubMed  Google Scholar 

  10. Walsh G, Jefferis R. Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol. 2006;24(10):1241–52.

    CAS  CrossRef  PubMed  Google Scholar 

  11. Liu L. Antibody glycosylation and its impact on the pharmacokinetics and pharmacodynamics of monoclonal antibodies and fc-fusion proteins. J Pharm Sci. 2015;104(6):1866–84.

    CAS  CrossRef  PubMed  Google Scholar 

  12. Lubiniecki A, Volkin DB, Federici M, et al. Comparability assessments of process and product changes made during development of two different monoclonal antibodies. Biologicals. 2011;39(1):9–22.

    CAS  CrossRef  PubMed  Google Scholar 

  13. Wright B, Bruninghaus M, Vrabel N, et al. A novel seed-train process: using high-density cell banking, a disposable bioreactor, and perfusion technologies. Available at: http://www.bioprocessintl.com/upstream-processing/upstream-single-use-technologies/novel-seed-train-process-using-high-density-cell-banking-disposable-bioreactor-perfusion-technologies/ Accessed 4 Feb 2017: BioProcess International; 2015.

  14. Lee JF, Litten JB, Grampp G. Comparability and biosimilarity: considerations for the healthcare provider. Curr Med Res Opin. 2012;28(6):1053–8.

    CAS  CrossRef  PubMed  Google Scholar 

  15. Liu HF, Ma J, Winter C, et al. Recovery and purification process development for monoclonal antibody production. MAbs. 2010;2(5):480–99.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  16. US Department of Health and Human Services Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER). Scientific considerations in demonstrating biosimilarity to a reference product: guidance for industry. Available at http://www.fda.gov/downloads/DrugsGuidanceComplianceRegulatoryInformation/Guidances/UCM291128.pdf (2015). Accessed 4 Feb 2017.

  17. FDA approves first biosimilar product Zarxio [press release]. Silver Spring, MD: Available at: http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm436648.htm. (2015). Accessed 4 Feb 2017.

  18. FDA approves Inflectra, similar to Remicade [press release]. Silver Spring, MD: Available at: http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm494227.htm. (2016). Accessed 4 Feb 2017.

  19. FDA approves Erelzi, a biosimilar to Enbrel [press release]. Silver Spring, MD: Available at: http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm518639.htm. (2016). Accessed 8 Feb 2017.

  20. FDA approves amjevita, a biosimilar to Humira [press release]. Silver Spring, MD: Available at: http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm522243.htm. (2016). Accessed 4 Feb 2017.

  21. Pro Pharma Communications International. GaBI online-generics and biosimilars initiative. Biosimilars use in Europe Mol, Belgium: Available at: http://www.gabionline.net/Reports/Biosimilars-use-in-Europe. (2011). Accessed 4 Feb 2017.

  22. Zelenetz A, Ahmed I, Braud EL, et al. NCCN biosimilars white paper: regulatory, scientific, and patient safety perspectives. J Natl Compr Canc Netw. 2011;9(Suppl 4):S1–S22.

    CAS  CrossRef  PubMed  Google Scholar 

  23. Mellstedt H, Niederwieser D, Ludwig H. The challenge of biosimilars. Ann Oncol. 2008;19:412–9.

    Google Scholar 

  24. Declerck P, Farouk-Rezk M, Rudd PM. Biosimilarity versus manufacturing change: two distinct concepts. Pharm Res. 2016;33(2):261–8.

    CAS  CrossRef  PubMed  Google Scholar 

  25. US FDA. New Drug Application (NDA). Silver Spring, MD: Available at: http://www.fda.gov/Drugs/DevelopmentApprovalProcess/HowDrugsareDevelopedandApproved/ApprovalApplications/NewDrugApplicationNDA/default.htm. (2016). Accessed 4 Feb 2017.

  26. Federal Register. Guidance for industry on scale-up post-approval changes: manufacturing equipment Addendum. Available at: https://www.gpo.gov/fdsys/pkg/FR-2014-12-02/pdf/2014-28256.pdf. (2014). Accessed 4 Feb 2017.

  27. International Conference on Harmonisation. International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use. ICH Harmonised Tripartite Guideline. Comparability of Biotechnological/Biological Products Subject to Changes in their Manufacturing Process. Avaialble at http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q5E/Step4/Q5E_Guideline.pdf. (2004). Accessed 8 Feb 2017.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Primal Kaur MD, MBA .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Nathan, J.J., Ramchandani, M., Kaur, P. (2018). Manufacturing of Biologics. In: Yamauchi, P. (eds) Biologic and Systemic Agents in Dermatology. Springer, Cham. https://doi.org/10.1007/978-3-319-66884-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66884-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66883-3

  • Online ISBN: 978-3-319-66884-0

  • eBook Packages: MedicineMedicine (R0)