Skip to main content

The Pharmacology of Intravenous Opioids

  • Chapter
  • First Online:
Geriatric Anesthesiology

Abstract

This chapter reviews the pharmacology of the intravenously administered opioids in the practice of geriatric anesthesiology. These drugs include morphine, meperidine, hydromorphone, fentanyl, sufentanil, and methadone. It is important that anesthesiologists understand the differences in pharmacology of opioids in elderly patients, in order to choose the appropriate drug and titrate precisely to achieve the desired analgesic effects while minimizing the risks of opioid toxicity. The key points for this chapter are as follows: (1) Elderly patients need about half the dose as younger patients, (2) The primary reason is pharmacodynamics (the elderly brain is more sensitive to opioids), (3) The pharmacokinetic changes with age are modest, (4) Studies in elderly animals show reduced numbers of μ receptors with increased age. That does not explain the reduction in dose, as decreased receptor density should decrease sensitivity to opioids. The enhancement in drug effect seen in the clinic is more likely attributable to changes in cyclonucleotide coupling and other downstream changes that occur in aging, and (5) Mepiridine should be used with caution in elderly patients due to its effects on myocardium, pharmacokinetics related to its metabolites, and its delirogenic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Data extensively reanalyzed to obtain volume and clearance estimates.

  2. 2.

    Original data provided by S. Bjorkman and fit using population model to create estimates in Table 18.1.

  3. 3.

    Based on a time to peak of 8.5 min in goats ()! It is not great, but it is the best onset data available.

  4. 4.

    Based on a time to peak effect of 15–20 min.

  5. 5.

    Scaled to fentanyl based on relative electroencephalogram (EEG) potency of fentanyl [63] and sufentanil [79].

  6. 6.

    Scaled to fentanyl based on the relative EEG potency of fentanyl and remifentanil [65].

  7. 7.

    he MEC range given by Dahlstrom was 6–31 ng/mL, with a mean of 16 ng/mL. We chose 8 ng/mL, at the lower end of the reported range, because the average value of 16 ng/mL predicted equianalgesic morphine that seemed excessive.

  8. 8.

    This was the most difficult potency to determine from the literature. Hill and Zacny documented a tenfold bolus dose potency difference versus morphine, which was the final basis for calculating this number and is similar to the value suggested by the Coda paper.

References

  1. Ventafridda V, Tamburini M, Caraceni A, De Conno F, Naldi F. A validation study of the WHO method for cancer pain relief. Cancer. 1987;59:850–6.

    Article  CAS  PubMed  Google Scholar 

  2. Jacox A, Carr DB, Payne R. New clinical-practice guidelines for the management of pain in patients with cancer. N Engl J Med. 1994;330:651–5.

    Article  CAS  PubMed  Google Scholar 

  3. Bafitis H, Sargent F. Human physiological adaptability through the life sequence. J Gerontol. 1977;32:402–10.

    Article  CAS  PubMed  Google Scholar 

  4. Klein U, Klein M, Sturm H, et al. The frequency of adverse drug reactions as dependent upon age, sex and duration of hospitalization. Int J Clin Pharmacol Biopharm. 1976;13:187–95.

    CAS  PubMed  Google Scholar 

  5. Crooks J. Aging and drug disposition—pharmacodynamics. J Chronic Dis. 1983;36:85–90.

    Article  CAS  PubMed  Google Scholar 

  6. Pert CB, Snyder SH. Opiate receptor: demonstration in nervous tissue. Science. 1973;179:1011–4.

    Article  CAS  PubMed  Google Scholar 

  7. Simon EJ, Hiller JM, Edelman I. Stereospecific binding of the potent narcotic analgesic (3H) Etorphine to ratbrain homogenate. Proc Natl Acad Sci U S A. 1973;70:1947–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Terenius L. Characteristics of the “receptor” for narcotic analgesics in synaptic plasma membrane fraction from rat brain. Acta Pharmacol Toxicol (Copenh). 1973;33:377–84.

    Article  CAS  Google Scholar 

  9. Hughes J, Smith TW, Kosterlitz HW, Fothergill LA, Morgan BA, Morris HR. Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature. 1975;258:577–80.

    Article  CAS  PubMed  Google Scholar 

  10. Li CH, Chung D. Isolation and structure of an untriakontapeptide with opiate activity from camel pituitary glands. Proc Natl Acad Sci U S A. 1976;73:1145–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Goldstein A, Tachibana S, Lowney LI, Hunkapiller M, Hood L. Dynorphin-(1–13), an extraordinarily potent opioid peptide. Proc Natl Acad Sci U S A. 1979;76:6666–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Martin WR, Eades CG, Thompson JA, Huppler RE, Gilbert PE. The effects of morphine- and nalorphine-like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther. 1976;197:517–32.

    CAS  PubMed  Google Scholar 

  13. Chang KJ, Cooper BR, Hazum E, Cuatrecasas P. Multiple opiate receptors: different regional distribution in the brain and differential binding of opiates and opioid peptides. Mol Pharmacol. 1979;16:91–104.

    CAS  PubMed  Google Scholar 

  14. Robson LE, Kosterlitz HW. Specific protection of the binding sites of D-Ala2-D-Leu5-enkephalin (delta-receptors) and dihydromorphine (mu-receptors). Proc R Soc Lond B Biol Sci. 1979;205:425–32.

    Article  CAS  PubMed  Google Scholar 

  15. Schulz R, Wuster M, Krenss H, Herz A. Selective development of tolerance without dependence in multiple opiate receptors of mouse vas deferens. Nature. 1980;285:242–3.

    Article  CAS  PubMed  Google Scholar 

  16. Pasternak GW, Childers SR, Snyder SH. Opiate analgesia: evidence for mediation by a subpopulation of opiate receptors. Science. 1980;208:514–6.

    Article  CAS  PubMed  Google Scholar 

  17. Ling GS, Spiegel K, Nishimura SL, Pasternak GW. Dissociation of morphine’s analgesic and respiratory depressant actions. Eur J Pharmacol. 1983;86:487–8.

    Article  CAS  PubMed  Google Scholar 

  18. Ling GS, Spiegel K, Lockhart SH, Pasternak GW. Separation of opioid analgesia from respiratory depression: evidence for different receptor mechanisms. J Pharmacol Exp Ther. 1985;232:149–55.

    CAS  PubMed  Google Scholar 

  19. Brown GP, Yang K, King MA, et al. 3-Methoxynaltrexone, a selective heroin/morphine-6beta-glucuronide antagonist. FEBS Lett. 1997;412:35–8.

    Article  CAS  PubMed  Google Scholar 

  20. Crews JC, Sweeney NJ, Denson DD. Clinical efficacy of methadone in patients refractory to other mu-opioid receptor agonist analgesics for management of terminal cancer pain. Case presentations and discussion of incomplete cross-tolerance among opioid agonist analgesics. Cancer. 1993;72:2266–72.

    Article  CAS  PubMed  Google Scholar 

  21. Mercadante S. Opioid rotation for cancer pain: rationale and clinical aspects. Cancer. 1999;86:1856–66.

    Article  CAS  PubMed  Google Scholar 

  22. Chang A, Emmel DW, Rossi GC, Pasternak GW. Methadone analgesia in morphine-insensitive CXBK mice. Eur J Pharmacol. 1998;351:189–91.

    Article  CAS  PubMed  Google Scholar 

  23. Abbadie C, Rossi GC, Orciuolo A, Zadina JE, Pasternak GW. Anatomical and functional correlation of the endomorphins with mu opioid receptor splice variants. Eur J Neurosci. 2002;16:1075–82.

    Article  CAS  PubMed  Google Scholar 

  24. Cadet P. Mu opiate receptor subtypes. Med Sci Monit. 2004;10:MS28–32.

    CAS  PubMed  Google Scholar 

  25. Stefano GB, Hartman A, Bilfinger TV, et al. Presence of the mu3 opiate receptor in endothelial cells. Coupling to nitric oxide production and vasodilation. J Biol Chem. 1995;270:30290–3.

    Article  CAS  PubMed  Google Scholar 

  26. Kozak CA, Filie J, Adamson MC, Chen Y, Yu L. Murine chromosomal location of the mu and kappa opioid receptor genes. Genomics. 1994;21:659–61.

    Article  CAS  PubMed  Google Scholar 

  27. Belknap JK, Mogil JS, Helms ML, et al. Localization to chromosome 10 of a locus influencing morphine analgesia in crosses derived from C57BL/6 and DBA/2 strains. Life Sci. 1995;57:PL117–24.

    Article  CAS  PubMed  Google Scholar 

  28. Lötsch J, Geisslinger G. Are mu-opioid receptor polymorphisms important for clinical opioid therapy? Trends Mol Med. 2005;11:82–9.

    Article  PubMed  CAS  Google Scholar 

  29. Romberg RR, Olofsen E, Bijl H, et al. Polymorphism of mu-opioid receptor gene (OPRM1:c.118A > G) does not protect against opioid-induced respiratory depression despite reduced analgesic response. Anesthesiology. 2005;102:522–30.

    Article  CAS  PubMed  Google Scholar 

  30. Pasternak GW. Multiple opiate receptors: deja vu all over again. Neuropharmacology. 2004;47(Suppl 1):312–23.

    Article  CAS  PubMed  Google Scholar 

  31. Chen Y, Mestek A, Liu J, Hurley JA, Yu L. Molecular cloning and functional expression of a mu-opioid receptor from rat brain. Mol Pharmacol. 1993;44:8–12.

    CAS  PubMed  Google Scholar 

  32. Wang JB, Imai Y, Eppler CM, Gregor P, Spivak CE, Uhl GR. Mu opiate receptor: cDNA cloning and expression. Proc Natl Acad Sci U S A. 1993;90:10230–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pan YX, Xu J, Mahurter L, Xu M, Gilbert AK, Pasternak GW. Identification and characterization of two new human mu opioid receptor splice variants, hMOR-1O and hMOR-1X. Biochem Biophys Res Commun. 2003;301:1057–61.

    Article  CAS  PubMed  Google Scholar 

  34. Connor M, Christie MD. Opioid receptor signalling mechanisms. Clin Exp Pharmacol Physiol. 1999;26:493–9.

    Article  CAS  PubMed  Google Scholar 

  35. North RA. Opioid actions on membrane ion channels. In: Herz A, editor. Opioids. Handbook of experimental pharmacology, vol. 104. Berlin: Springer-Verlag; 1993. p. 773–97.

    Google Scholar 

  36. Bohn LM, Lefkowitz RJ, Gainetdinov RR, Peppel K, Caron MG, Lin FT. Enhanced morphine analgesia in mice lacking beta-arrestin 2. Science. 1999;286:2495–8.

    Article  CAS  PubMed  Google Scholar 

  37. Raehal KM, Walker JK, Bohn LM. Morphine side effects in beta-arrestin 2 knockout mice. J Pharmacol Exp Ther. 2005;314:1195–201.

    Article  CAS  PubMed  Google Scholar 

  38. DeWire SM, Yamashita DS, Rominger DH, Liu G, Cowan CL, Graczyk TM, Chen XT, Pitis PM, Gotchev D, Yuan C, Koblish M, Lark MW, Violin JD. A G protein-biased ligand at the μ-opioid receptor is potently analgesic with reduced gastrointestinal and respiratory dysfunction compared with morphine. J Pharmacol Exp Ther. 2013;344:708–17.

    Article  CAS  PubMed  Google Scholar 

  39. Soergel DG, Subach RA, Burnham N, Lark MW, James IE, Sadler BM, Skobieranda F, Violin JD, Webster LR. Biased agonism of the μ-opioid receptor by TRV130 increases analgesia and reduces on-target adverse effects versus morphine: a randomized, double-blind, placebo-controlled, crossover study in healthy volunteers. Pain. 2014;155:1829–35.

    Article  CAS  PubMed  Google Scholar 

  40. Manglik A, Lin H, Aryal DK, McCorvy JD, Dengler D, Corder G, Levit A, Kling RC, Bernat V, Hübner H, Huang XP, Sassano MF, Giguère PM, Löber S, Da Duan, Scherrer G, Kobilka BK, Gmeiner P, Roth BL, Shoichet BK. Structure-based discovery of opioid analgesics with reduced side effects. Nature. 2016;537:185–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Viscusi ER, Webster L, Kuss M, Daniels S, Bolognese JA, Zuckerman S, Soergel DG, Subach RA, Cook E, Skobieranda F. A randomized, phase 2 study investigating TRV130, a biased ligand of the μ-opioid receptor, for the intravenous treatment of acute pain. Pain. 2016;157:264–72.

    Article  CAS  PubMed  Google Scholar 

  42. Ueno E, Liu DD, Ho IK, Hoskins B. Opiate receptor characteristics in brains from young, mature and aged mice. Neurobiol Aging. 1988;9:279–83.

    Article  CAS  PubMed  Google Scholar 

  43. Hess GD, Joseph JA, Roth GS. Effect of age on sensitivity to pain and brain opiate receptors. Neurobiol Aging. 1981;2:49–55.

    Article  CAS  PubMed  Google Scholar 

  44. Petkov VV, Petkov VD, Grahovska T, Konstantinova E. Enkephalin receptor changes in rat brain during aging. Gen Pharmacol. 1984;15:491–5.

    Article  CAS  PubMed  Google Scholar 

  45. Fulop T Jr, Kekessy D, Foris G. Impaired coupling of naloxone sensitive opiate receptors to adenylate cyclase in PMNLs of aged male subjects. Int J Immunopharmacol. 1987;9(6):651–7.

    Article  CAS  PubMed  Google Scholar 

  46. Hoskins B, Ho IK. Age-induced differentiation of morphine’s effect on cyclic nucleotide metabolism. Neurobiol Aging. 1987;8:473–6.

    Article  CAS  PubMed  Google Scholar 

  47. Smith MA, Gray JD. Age-related differences in sensitivity to the antinociceptive effects of opioids in male rats. Influence of nociceptive intensity and intrinsic efficacy at the mu receptor. Psychopharmacology. 2001;156:445–53.

    Article  CAS  PubMed  Google Scholar 

  48. Van Crugten JT, Somogyi AA, Nation RL, Reynolds G. The effect of old age on the disposition and antinociceptive response of morphine and morphine-6 betaglucuronide in the rat. Pain. 1997;71:199–205.

    Article  PubMed  Google Scholar 

  49. Hoskins B, Burton CK, Ho IK. Differences in morphine-induced antinociception and locomotor activity in mature adult and aged mice. Pharmacol Biochem Behav. 1986;25:599–605.

    Article  CAS  PubMed  Google Scholar 

  50. Ayers E, Warmington M, Reid MC. Chronic pain perspectives: managing chronic pain in older adults: 6 steps to overcoming medication barriers. J Fam Pract. 2012;61:S16–21.

    Google Scholar 

  51. Helme RD, Gibson SJ. The epidemiology of pain in elderly people. Clin Geriatr Med. 2001;17:417–31.

    Article  CAS  PubMed  Google Scholar 

  52. Verhaak PF, Kerssens JJ, Dekker J, Sorbi MJ, Bensing JM. Prevalence of chronic benign pain disorder among adults: a review of the literature. Pain. 1998;77:231–9.

    Article  CAS  PubMed  Google Scholar 

  53. Sorkin BA, Rudy TE, Hanlon RB, Turk DC, Stieg RL. Chronic pain in old and young patients: differences appear less important than similarities. J Gerontol. 1990;45:P64–8.

    Article  CAS  PubMed  Google Scholar 

  54. Edwards RR, Fillingim RB. Age-associated differences in responses to noxious stimuli. J Gerontol A Biol Sci Med Sci. 2001;56:M180–5.

    Article  CAS  PubMed  Google Scholar 

  55. Edwards RR, Fillingim RB, Ness TJ. Age-related differences in endogenous pain modulation: a comparison of diffuse noxious inhibitory controls in healthy older and younger adults. Pain. 2003;101:155–65.

    Article  PubMed  Google Scholar 

  56. Washington LL, Gibson SJ, Helme RD. Age-related differences in the endogenous analgesic response to repeated cold water immersion in human volunteers. Pain. 2000;89:89–96.

    Article  CAS  PubMed  Google Scholar 

  57. Casale G, Pecorini M, Cuzzoni G, de Nicola P. Betaendorphin and cold pressor test in the aged. Gerontology. 1985;31:101–5.

    Article  CAS  PubMed  Google Scholar 

  58. Zheng Z, Gibson SJ, Khalil Z, Helme RD, McMeeken JM. Age-related differences in the time course of capsaicininduced hyperalgesia. Pain. 2000;85:51–8.

    Article  CAS  PubMed  Google Scholar 

  59. Chakour MC, Gibson SJ, Bradbeer M, Helme RD. The effect of age on A delta- and C-fibre thermal pain perception. Pain. 1996;64:143–52.

    Article  CAS  PubMed  Google Scholar 

  60. Cepeda MS, Farrar JT, Baumgarten M, Boston R, Carr DB, Strom BL. Side effects of opioids during short-term administration: effect of age, gender, and race. Clin Pharmacol Ther. 2003;74:102–12.

    Article  CAS  PubMed  Google Scholar 

  61. Sinclair DR, Chung F, Mezei G. Can postoperative nausea and vomiting be predicted? Anesthesiology. 1999;91:109–18.

    Article  CAS  PubMed  Google Scholar 

  62. Junger A, Hartmann B, Benson M, et al. The use of an anesthesia information management system for prediction of antiemetic rescue treatment at the postanesthesia care unit. Anesth Analg. 2001;92(5):1203–9.

    Article  CAS  PubMed  Google Scholar 

  63. Scott JC, Stanski DR. Decreased fentanyl/alfentanil dose requirement with increasing age: a pharmacodynamic basis. J Pharmacol Exp Ther. 1987;240:159–66.

    CAS  PubMed  Google Scholar 

  64. Hudson RJ, Bergstrom RG, Thomson IR, Sabourin MA, Rosenbloom M, Strunin L. Pharmacokinetics of sufentanil in patients undergoing abdominal aortic surgery. Anesthesiology. 1989;70:426–31.

    Article  CAS  PubMed  Google Scholar 

  65. Minto CF, Schnider TW, Egan T, et al. The influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil. I. Model development. Anesthesiology. 1997;86:10–23.

    Article  CAS  PubMed  Google Scholar 

  66. Lotsch J, Skarke C, Schmidt H, Liefhold J, Geisslinger G. Pharmacokinetic modeling to predict morphine and morphine-6-glucuronide plasma concentrations in healthy young volunteers. Clin Pharmacol Ther. 2002;72:151–62.

    Article  CAS  PubMed  Google Scholar 

  67. Inturrisi CE, Colburn WA, Kaiko RF, Houde RW, Foley KM. Pharmacokinetics and pharmacodynamics of methadone in patients with chronic pain. Clin Pharmacol Ther. 1987;41:392–401.

    Article  CAS  PubMed  Google Scholar 

  68. Bjorkman S. Reduction and lumping of physiologically based pharmacokinetic models: prediction of the disposition of fentanyl and pethidine in humans by successively simplified models. J Pharmacokinet Pharmacodyn. 2003;30:285–307.

    Article  PubMed  Google Scholar 

  69. Drover DR, Angst MS, Valle M, et al. Input characteristics and bioavailability after administration of immediate and a new extended-release formulation of hydromorphone in healthy volunteers. Anesthesiology. 2002;97:827–36.

    Article  CAS  PubMed  Google Scholar 

  70. Qiao GL, Fung KF. Pharmacokinetic-pharmacodynamic modelling of meperidine in goats (II): modelling. J Vet Pharmacol Ther. 1994;17:127–34.

    Article  CAS  PubMed  Google Scholar 

  71. Inturrisi CE, Portenoy RK, Max MB, Colburn WA, Foley KM. Pharmacokinetic-pharmacodynamic relationships of methadone infusions in patients with cancer pain. Clin Pharmacol Ther. 1990;47:565–77.

    Article  CAS  PubMed  Google Scholar 

  72. Hill JL, Zacny JP. Comparing the subjective, psychomotor, and physiological effects of intravenous hydromorphone and morphine in healthy volunteers. Psychopharmacology. 2000;152:31–9.

    Article  CAS  PubMed  Google Scholar 

  73. Shafer SL, Varvel JR. Pharmacokinetics, pharmacodynamics, and rational opioid selection. Anesthesiology. 1991;74:53–63.

    Article  CAS  PubMed  Google Scholar 

  74. Shafer SL, Gregg KM. Algorithms to rapidly achieve and maintain stable drug concentrations at the site of drug effect with a computer-controlled infusion pump. J Pharmacokinet Biopharm. 1992;20:147–69.

    Article  CAS  PubMed  Google Scholar 

  75. Henthorn TK, Krejcie TC, Shanks CA, Avram MJ. Time-dependent distribution volume and kinetics of the pharmacodynamic effector site. J Pharm Sci. 1992;81:1136–8.

    Article  CAS  PubMed  Google Scholar 

  76. Wada DR, Drover DR, Lemmens HJ. Determination of the distribution volume that can be used to calculate the intravenous loading dose. Clin Pharmacokinet. 1998;35:1–7.

    Article  CAS  PubMed  Google Scholar 

  77. Gourlay GK, Kowalski SR, Plummer JL, Cousins MJ, Armstrong PJ. Fentanyl blood concentration-analgesic response relationship in the treatment of postoperative pain. Anesth Analg. 1988;67:329–37.

    Article  CAS  PubMed  Google Scholar 

  78. Lehmann KA, Ribbert N, Horrichs-Haermeyer G. Postoperative patient-controlled analgesia with alfentanil: analgesic efficacy and minimum effective concentrations. J Pain Symptom Manag. 1990;5:249–58.

    Article  CAS  Google Scholar 

  79. Scott JC, Cooke JE, Stanski DR. Electroencephalographic quantitation of opioid effect: comparative pharmacodynamics of fentanyl and sufentanil. Anesthesiology. 1991;74:34–42.

    Article  CAS  PubMed  Google Scholar 

  80. Dahlstrom B, Tamsen A, Paalzow L, Hartvig P. Patient-controlled analgesic therapy. Part IV. Pharmacokinetics and analgesic plasma concentrations of morphine. Clin Pharmacokinet. 1982;7:266–79.

    Article  CAS  PubMed  Google Scholar 

  81. Gourlay GK, Willis RJ, Wilson PR. Postoperative pain control with methadone: influence of supplementary methadone doses and blood concentration-response relationships. Anesthesiology. 1984;61:19–26.

    Article  CAS  PubMed  Google Scholar 

  82. Mather LE, Glynn CJ. The minimum effective analgetic blood concentration of pethidine in patients with intractable pain. Br J Clin Pharmacol. 1982;14:385–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Coda B, Tanaka A, Jacobson RC, Donaldson G, Chapman CR. Hydromorphone analgesia after intravenous bolus administration. Pain. 1997;71:41–8.

    Article  CAS  PubMed  Google Scholar 

  84. Hughes MA, Glass PS, Jacobs JR. Context-sensitive half-time in multicompartment pharmacokinetic models for intravenous anesthetic drugs. Anesthesiology. 1992;76:334–41.

    Article  CAS  PubMed  Google Scholar 

  85. Youngs EJ, Shafer SL. Pharmacokinetic parameters relevant to recovery from opioids. Anesthesiology. 1994;81:833–42.

    Article  CAS  PubMed  Google Scholar 

  86. Gintzler AR, Gershon MD, Spector S. A nonpeptide morphine-like compound: immunocytochemical localization in the mouse brain. Science. 1978;199:447–8.

    Article  CAS  PubMed  Google Scholar 

  87. Goldstein A, Barrett RW, James IF, et al. Morphine and other opiates from beef brain and adrenal. Proc Natl Acad Sci U S A. 1985;82:5203–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Donnerer J, Oka K, Brossi A, Rice KC, Spector S. Presence and formation of codeine and morphine in the rat. Proc Natl Acad Sci U S A. 1986;83:4566–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cardinale GJ, Donnerer J, Finck AD, Kantrowitz JD, Oka K, Spector S. Morphine and codeine are endogenous components of human cerebrospinal fluid. Life Sci. 1987;40:301–6.

    Article  CAS  PubMed  Google Scholar 

  90. Lotsch J, Geisslinger G. Morphine-6-glucuronide: an analgesic of the future? Clin Pharmacokinet. 2001;40:485–99.

    Article  CAS  PubMed  Google Scholar 

  91. Paul D, Standifer KM, Inturrisi CE, Pasternak GW. Pharmacological characterization of morphine-6 beta-glucuro-nide, a very potent morphine metabolite. J Pharmacol Exp Ther. 1989;251:477–83.

    CAS  PubMed  Google Scholar 

  92. Lotsch J, Kobal G, Stockmann A, Brune K, Geisslinger G. Lack of analgesic activity of morphine-6-glucuronide after short-term intravenous administration in healthy volunteers. Anesthesiology. 1997;87(6):1348–58.

    Article  CAS  PubMed  Google Scholar 

  93. Lotsch J, Kobal G, Geisslinger G. No contribution of morphine-6-glucuronide to clinical morphine effects after short-term administration. Clin Neuropharmacol. 1998;21:351–4.

    CAS  PubMed  Google Scholar 

  94. Wolff T, Samuelsson H, Hedner T. Morphine and morphine metabolite concentrations in cerebrospinal fluid and plasma in cancer pain patients after slow-release oral morphine administration. Pain. 1995;62:147–54.

    Article  CAS  PubMed  Google Scholar 

  95. Portenoy RK, Foley KM, Stulman J, et al. Plasma morphine and morphine-6-glucuronide during chronic morphine therapy for cancer pain: plasma profiles, steady-state concentrations and the consequences of renal failure. Pain. 1991;47:13–9.

    Article  CAS  PubMed  Google Scholar 

  96. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16:31–41.

    Article  CAS  PubMed  Google Scholar 

  97. Lotsch J, Skarke C, Schmidt H, Grosch S, Geisslinger G. The transfer half-life of morphine-6-glucuronide from plasma to effect site assessed by pupil size measurement in healthy volunteers. Anesthesiology. 2001;95:1329–38.

    Article  CAS  PubMed  Google Scholar 

  98. Skarke C, Jarrar M, Erb K, Schmidt H, Geisslinger G, Lotsch J. Respiratory and miotic effects of morphine in healthy volunteers when P-glycoprotein is blocked by quinidine. Clin Pharmacol Ther. 2003;74:303–11.

    Article  CAS  PubMed  Google Scholar 

  99. Skarke C, Darimont J, Schmidt H, Geisslinger G, Lotsch J. Analgesic effects of morphine and morphine-6-glucuronide in a transcutaneous electrical pain model in healthy volunteers. Clin Pharmacol Ther. 2003;73:107–21.

    Article  CAS  PubMed  Google Scholar 

  100. Letrent SP, Polli JW, Humphreys JE, Pollack GM, Brouwer KR, Brouwer KL. P-glycoprotein-mediated transport of morphine in brain capillary endothelial cells. Biochem Pharmacol. 1999;58:951–7.

    Article  CAS  PubMed  Google Scholar 

  101. Dahan A, Romberg R, Teppema L, Sarton E, Bijl H, Olofsen E. Simultaneous measurement and integrated analysis of analgesia and respiration after an intravenous morphine infusion. Anesthesiology. 2004;101:1201–9.

    Article  CAS  PubMed  Google Scholar 

  102. Aubrun F, Monsel S, Langeron O, Coriat P, Riou B. Postoperative titration of intravenous morphine in the elderly patient. Anesthesiology. 2002;96:17–23.

    Article  CAS  PubMed  Google Scholar 

  103. Aubrun F, Bunge D, Langeron O, Saillant G, Coriat P, Riou B. Postoperative morphine consumption in the elderly patient. Anesthesiology. 2003;99:160–5.

    Article  CAS  PubMed  Google Scholar 

  104. Wagner LE 2nd, Eaton M, Sabnis SS, Gingrich KJ. Meperidine and lidocaine block of recombinant voltage-dependent Na+ channels: evidence that meperidine is a local anesthetic. Anesthesiology. 1999;91:1481–90.

    Article  CAS  PubMed  Google Scholar 

  105. Wolff M, Olschewski A, Vogel W, Hempelmann G. Meperidine suppresses the excitability of spinal dorsal horn neurons. Anesthesiology. 2004;100:947–55.

    Article  CAS  PubMed  Google Scholar 

  106. Holmberg L, Odar-Cederlof I, Boreus LO, Heyner L, Ehrnebo M. Comparative disposition of pethidine and norpethidine in old and young patients. Eur J Clin Pharmacol. 1982;22:175–9.

    Article  CAS  PubMed  Google Scholar 

  107. Seifert CF, Kennedy S. Meperidine is alive and well in the new millennium: evaluation of meperidine usage patterns and frequency of adverse drug reactions. Pharmacotherapy. 2004;24:776–83.

    Article  CAS  PubMed  Google Scholar 

  108. Odar-Cederlof I, Boreus LO, Bondesson U, Holmberg L, Heyner L. Comparison of renal excretion of pethidine (meperidine) and its metabolites in old and young patients. Eur J Clin Pharmacol. 1985;28:171–5.

    Article  CAS  PubMed  Google Scholar 

  109. Huang YF, Upton RN, Rutten AJ, Mather LE. The hemodynamic effects of intravenous bolus doses of meperidine in conscious sheep. Anesth Analg. 1994;78:442–9.

    Article  CAS  PubMed  Google Scholar 

  110. Fong HK, Sands LP, Leung JM. The role of postoperative analgesia in delirium and congnitive decline in elderly patients: a systematic review. Anesth Analg. 2006;102:1255–66.

    Article  PubMed  Google Scholar 

  111. Zornberg GL, Bodkin JA, Cohen BM. Severe adverse interaction between pethidine and selegiline. Lancet. 1991;337:246.

    Article  CAS  PubMed  Google Scholar 

  112. Keeri-Szanto M. Anaesthesia time/dose curves IX the use of hydromorphone in surgical anaesthesia and postoperative pain relief in comparison to morphine. Can Anaesth Soc J. 1976;23:587–95.

    Article  CAS  PubMed  Google Scholar 

  113. Kopp A, Wachauer D, Hoerauf KH, Zulus E, Reiter WJ, Steltzer H. Effect of preemptive hydromorphone administration on postoperative pain relief—a randomized controlled trial. Wien Klin Wochenschr. 2000;112:1002–6.

    CAS  PubMed  Google Scholar 

  114. Rapp SE, Egan KJ, Ross BK, Wild LM, Terman GW, Ching JM. A multidimensional comparison of morphine and hydromorphone patient-controlled analgesia. Anesth Analg. 1996;82:1043–8.

    CAS  PubMed  Google Scholar 

  115. Liu S, Carpenter RL, Mulroy MF, et al. Intravenous versus epidural administration of hydromorphone. Effects on analgesia and recovery after radical retropubic prostatectomy. Anesthesiology. 1995;82:682–8.

    Article  CAS  PubMed  Google Scholar 

  116. Brose WG, Tanelian DL, Brodsky JB, Mark JB, Cousins MJ. CSF and blood pharmacokinetics of hydromorphone and morphine following lumbar epidural administration. Pain. 1991;45:11–5.

    Article  CAS  PubMed  Google Scholar 

  117. Halpern SH, Arellano R, Preston R, et al. Epidural morphine vs hydromorphone in post-caesarean section patients. Can J Anaesth. 1996;43:595–8.

    Article  CAS  PubMed  Google Scholar 

  118. Bentley JB, Borel JD, Nenad RE Jr, Gillespie TJ. Age and fentanyl pharmacokinetics. Anesth Analg. 1982;61:968–71.

    Article  CAS  PubMed  Google Scholar 

  119. Singleton MA, Rosen JI, Fisher DM. Pharmacokinetics of fentanyl in the elderly. Br J Anaesth. 1988;60:619–22.

    Article  CAS  PubMed  Google Scholar 

  120. Scott JC, Ponganis KV, Stanski DR. EEG quantitation of narcotic effect: the comparative pharmacodynamics of fentanyl and alfentanil. Anesthesiology. 1985;62:234–41.

    Article  CAS  PubMed  Google Scholar 

  121. Martin G, Glass PS, Breslin DS, et al. A study of anesthetic drug utilization in different age groups. J Clin Anesth. 2003;15:194–200.

    Article  CAS  PubMed  Google Scholar 

  122. Holdsworth MT, Forman WB, Killilea TA, et al. Transdermal fentanyl disposition in elderly subjects. Gerontology. 1994;40:32–7.

    Article  CAS  PubMed  Google Scholar 

  123. Davis MP, Srivastava M. Demographics, assessment and management of pain in the elderly. Drugs Aging. 2003;20:23–57.

    Article  CAS  PubMed  Google Scholar 

  124. Kharasch ED, Hoffer C, Whittington D. Influence of age on the pharmacokinetics and pharmacodynamics of oral transmucosal fentanyl citrate. Anesthesiology. 2004;101:738–43.

    Article  CAS  PubMed  Google Scholar 

  125. Shafer A, Sung ML, White PF. Pharmacokinetics and pharmacodynamics of alfentanil infusions during general anesthesia. Anesth Analg. 1986;65:1021–8.

    Article  CAS  PubMed  Google Scholar 

  126. Sitar DS, Duke PC, Benthuysen JL, Sanford TJ, Smith NT. Aging and alfentanil disposition in healthy volunteers and surgical patients. Can J Anaesth. 1989;36:149–54.

    Article  CAS  PubMed  Google Scholar 

  127. Kent AP, Dodson ME, Bower S. The pharmacokinetics and clinical effects of a low dose of alfentanil in elderly patients. Acta Anaesthesiol Belg. 1988;39:25–33.

    CAS  PubMed  Google Scholar 

  128. Lemmens HJ, Burm AG, Hennis PJ, Gladines MP, Bovill JG. Influence of age on the pharmacokinetics of alfentanil. Gender dependence. Clin Pharmacokinet. 1990;19:416–22.

    Article  CAS  PubMed  Google Scholar 

  129. Maitre PO, Vozeh S, Heykants J, Thomson DA, Stanski DR. Population pharmacokinetics of alfentanil: the average dose-plasma concentration relationship and interindividual variability in patients. Anesthesiology. 1987;68:59–67.

    Article  Google Scholar 

  130. Raemer DB, Buschman A, Varvel JR, et al. The prospective use of population pharmacokinetics in a computer driven system for alfentanil. Anesthesiology. 1990;73:66–72.

    Article  CAS  PubMed  Google Scholar 

  131. Lemmens HJ, Burm AG, Bovill JG, Hennis PJ. Pharmacodynamics of alfentanil as a supplement to nitrous oxide anaesthesia in the elderly patient. Br J Anaesth. 1988;61:173–9.

    Article  CAS  PubMed  Google Scholar 

  132. Lemmens HJ, Bovill JG, Hennis PJ, Burm AG. Age has no effect on the pharmacodynamics of alfentanil. Anesth Analg. 1988;67:956–60.

    Article  CAS  PubMed  Google Scholar 

  133. Lemmens HJ, Burm AG, Bovill JG, Hennis PJ, Gladines MP. Pharmacodynamics of alfentanil. The role of plasma protein binding. Anesthesiology. 1992;76:65–70.

    Article  CAS  PubMed  Google Scholar 

  134. Lemmens HJ, Bovill JG, Burm AG, Hennis PJ. Alfentanil infusion in the elderly. Prolonged computer-assisted infusion of alfentanil in the elderly surgical patient. Anaesthesia. 1988;43:850–6.

    Article  CAS  PubMed  Google Scholar 

  135. Helmers JH, van Leeuwen L, Zuurmond WW. Sufentanil pharmacokinetics in young adult and elderly surgical patients. Eur J Anaesthesiol. 1994;11:181–5.

    CAS  PubMed  Google Scholar 

  136. Gepts E, Shafer SL, Camu F, et al. Linearity of pharmacokinetics and model estimation of sufentanil. Anesthesiology. 1995;83:1194–204.

    Article  CAS  PubMed  Google Scholar 

  137. Matteo RS, Schwartz AE, Ornstein E, Young WL, Chang WJ. Pharmacokinetics of sufentanil in the elderly surgical patient. Can J Anaesth. 1990;37:852–6.

    Article  CAS  PubMed  Google Scholar 

  138. Hofbauer R, Tesinsky P, Hammerschmidt V, et al. No reduction in the sufentanil requirement of elderly patients undergoing ventilatory support in the medical intensive care unit. Eur J Anaesthesiol. 1999;16:702–7.

    Article  CAS  PubMed  Google Scholar 

  139. Minto CF, Schnider TW, Shafer SL. The influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil. II. Model application. Anesthesiology. 1997;86:24–33.

    Article  CAS  PubMed  Google Scholar 

  140. Shimoyama N, Shimoyama M, Elliott KJ, Inturrisi CE. d-Methadone is antinociceptive in the rat formalin test. J Pharmacol Exp Ther. 1997;283:648–52.

    CAS  PubMed  Google Scholar 

  141. Davis AM, Inturrisi CE. d-Methadone blocks morphine tolerance and N-methyl-D-aspartate-induced hyperalgesia. J Pharmacol Exp Ther. 1999;289:1048–53.

    CAS  PubMed  Google Scholar 

  142. Callahan RJ, Au JD, Paul M, Liu C, Yost CS. Functional inhibition by methadone of N-methyl-D-aspartate receptors expressed in Xenopus oocytes: stereospecific and subunit effects. Anesth Analg. 2004;98:653–9.

    Article  CAS  PubMed  Google Scholar 

  143. Alinejad S, Kazemi T, Zamani N, Hoffman RS, Mehrpour O. A systematic review of the cardiotoxicity of methadone. EXCLI J. 2015;14:577–600.

    PubMed  PubMed Central  Google Scholar 

  144. Lavand’Homme P, De Kock M. Practical guidelines on the postoperative use of patient-controlled analgesia in the elderly. Drugs Aging. 1998;13:9–16.

    Article  PubMed  Google Scholar 

  145. Macintyre PE, Jarvis DA. Age is the best predictor of postoperative morphine requirements. Pain. 1996;64:357–64.

    Article  CAS  PubMed  Google Scholar 

  146. Gagliese L, Jackson M, Ritvo P, Wowk A, Katz J. Age is not an impediment to effective use of patient-controlled analgesia by surgical patients. Anesthesiology. 2000;93:601–10.

    Article  CAS  PubMed  Google Scholar 

  147. Woodhouse A, Mather LE. The influence of age upon opioid analgesic use in the patient-controlled analgesia environment. Anaesthesia. 1997;52:949–55.

    Article  CAS  PubMed  Google Scholar 

  148. Ready LB. PCA is effective for older patients, but are there limits? Anesthesiology. 2000;93:597–8.

    Article  CAS  PubMed  Google Scholar 

  149. Beattie WS, Warriner CB, Etches R, et al. The addition of continuous intravenous infusion of ketorolac to a patient-controlled analgetic morphine regime reduced postoperative myocardial ischemia in patients undergoing elective total hip or knee arthroplasty. Anesth Analg. 1997;84:715–22.

    Article  CAS  PubMed  Google Scholar 

  150. Malmberg AB, Yaksh TL. Pharmacology of the spinal action of ketorolac, morphine, ST-91, U50488H, and L-PIA on the formalin test and an isobolographic analysis of the NSAID interaction. Anesthesiology. 1993;79:270–81.

    Article  CAS  PubMed  Google Scholar 

  151. Lashbrook JM, Ossipov MH, Hunter JC, Raffa RB, Tallarida RJ, Porreca F. Synergistic antiallodynic effects of spinal morphine with ketorolac and selective COX and COX2-inhibitors in nerve-injured rats. Pain. 1999;82:65–72.

    Article  CAS  PubMed  Google Scholar 

  152. Gloth FM. Pain management in older adults: prevention and treatment. J Am Geriatr Soc. 2001;49:188–99.

    Article  PubMed  Google Scholar 

  153. Wilder-Smith OH. Opioid use in the elderly. Eur J Pain. 2005;9:137–40.

    Article  CAS  PubMed  Google Scholar 

  154. Taguchi A, Sharma N, Saleem RM, et al. Selective postoperative inhibition of gastrointestinal opioid receptors. N Engl J Med. 2001;345:935–40.

    Article  CAS  PubMed  Google Scholar 

  155. Kurz A, Sessler DI. Opioid-induced bowel dysfunction: pathophysiology and potential new therapies. Drugs. 2003;63:649–71.

    Article  CAS  PubMed  Google Scholar 

  156. Nieuwenhuijs DJ, Olofsen E, Romberg RR, et al. Response surface modeling of remifentanil-propofol interaction on cardiorespiratory control and bispectral index. Anesthesiology. 2003;98:312–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie Whitener .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Whitener, S., McEvoy, M.D., Shafer, S.L., Flood, P. (2018). The Pharmacology of Intravenous Opioids. In: Reves, J., Barnett, S., McSwain, J., Rooke, G. (eds) Geriatric Anesthesiology. Springer, Cham. https://doi.org/10.1007/978-3-319-66878-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66878-9_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66877-2

  • Online ISBN: 978-3-319-66878-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics