Advertisement

The Stability of Threshold Values for Software Metrics in Software Defect Prediction

Conference paper
  • 692 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10563)

Abstract

Software metrics measure the complexity and quality in many empirical case studies. Recent studies have shown that threshold values can be detected for some metrics and used to predict defect-prone system modules. The goal of this paper is to empirically validate the stability of threshold values. Our aim is to analyze a wider set of software metrics than it has been previously reported and to perform the analysis in the context of different levels of data imbalance. We replicate the case study of deriving thresholds for software metrics using a statistical model based on logistic regression. Furthermore, we analyze threshold stability in the context of varying level of data imbalance. The methodology is validated using a great number of subsequent releases of open source projects. We revealed that threshold values of some metrics could be used to effectively predict defect-prone modules. Moreover, threshold values of some metrics may be influenced by the level of data imbalance. The results of this case study give a valuable insight into the importance of software metrics and the presented methodology may also be used by software quality assurance practitioners.

Keywords

Software metrics Threshold Data imbalance Software defect prediction 

Notes

Acknowledgments

This work is supported in part by Croatian Science Foundation’s funding of the project UIP-2014-09-7945 and by the University of Rijeka Research Grant 13.09.2.2.16.

References

  1. 1.
    Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE Trans. Softw. Eng. 20(6), 476–493 (1994)CrossRefGoogle Scholar
  2. 2.
    Briand, L.C., Daly, J.W., Wust, J.K.: A unified framework for coupling measurement in object-oriented systems. IEEE Trans. Softw. Eng. 25(1), 91–121 (1999)CrossRefGoogle Scholar
  3. 3.
    Basili, V.R., Briand, L.C., Melo, W.L.: A validation of object-oriented design metrics as quality indicators. IEEE Trans. Softw. Eng. 22(10), 751–761 (1996)CrossRefGoogle Scholar
  4. 4.
    Radjenović, D., Heričko, M., Torkar, R., Živković, A.: Software fault prediction metrics: a systematic literature review. Inf. Softw. Technol. 55(8), 1397–1418 (2013)CrossRefGoogle Scholar
  5. 5.
    Arisholm, E., Briand, L.C., Johannessen, E.B.: A systematic and comprehensive investigation of methods to build and evaluate fault prediction models. J. Syst. Softw. 83(1), 2–17 (2010)CrossRefGoogle Scholar
  6. 6.
    Shatnawi, R., Li, W.: The effectiveness of software metrics in identifying error-prone classes in post-release software evolution process. J. Syst. Softw. 81(11), 1868–1882 (2008)CrossRefGoogle Scholar
  7. 7.
    Shatnawi, R.: A quantitative investigation of the acceptable risk levels of object-oriented metrics in open-source systems. IEEE Trans. Softw. Eng. 36(2), 216–225 (2010)CrossRefGoogle Scholar
  8. 8.
    Galinac Grbac, T., Huljenić, D.: On the probability distribution of faults in complex software systems. Inf. Softw. Technol. 58, 250–258 (2015)CrossRefGoogle Scholar
  9. 9.
    Hall, T., Beecham, S., Bowes, D., Gray, D., Counsell, S.: A systematic literature review on fault prediction performance in software engineering. IEEE Trans. Softw. Eng. 38(6), 1276–1304 (2012)CrossRefGoogle Scholar
  10. 10.
    He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)CrossRefGoogle Scholar
  11. 11.
    Galinac Grbac, T., Runeson, P., Huljenić, D.: A second replicated quantitative analysis of fault distributions in complex software systems. IEEE Trans. Softw. Eng. 39(4), 462–476 (2013)CrossRefGoogle Scholar
  12. 12.
    Mauša, G., Galinac Grbac, T.: Co-evolutionary multi-population genetic programming for classification in software defect prediction: an empirical case study. Appl. Soft Comput. 55, 331–351 (2017)CrossRefGoogle Scholar
  13. 13.
    Graning, L., Jin, Y., Sendhoff, B.: Generalization improvement in multi-objective learning. In: The 2006 IEEE International Joint Conference on Neural Network Proceedings, pp. 4839–4846 (2006)Google Scholar
  14. 14.
    Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Heidelberg (2003)CrossRefzbMATHGoogle Scholar
  15. 15.
    Martin, W.N., Lienig, J., Cohoon, J.P.: Island (migration) models: evolutionary algorithms based on punctuated equilibria. Handb. Evol. Comput. 6, 1–15 (1997)Google Scholar
  16. 16.
    Arar, O.F., Ayan, K.: Deriving thresholds of software metrics to predict faults on open source software. Expert Syst. Appl. 61(1), 106–121 (2016)CrossRefGoogle Scholar
  17. 17.
    Shatnawi, R.: Deriving metrics thresholds using log transformation. J. Softw.: Evol. Process 27(2), 95–113 (2015). JSME-14-0025.R2Google Scholar
  18. 18.
    Mauša, G., Galinac Grbac, T., Dalbelo Bašić, B.: A systemathic data collection procedure for software defect prediction. Comput. Sci. Inf. Syst. 13(1), 173–197 (2016)CrossRefGoogle Scholar
  19. 19.
    Oliveira, P., Valente, M.T., Lima, F.P.: Extracting relative thresholds for source code metrics. In: Proceedings of CSMR-WCRE, pp. 254–263 (2014)Google Scholar
  20. 20.
    Weiss, G.M.: Mining with rarity: a unifying framework. SIGKDD Explor. Newsl. 6(1), 7–19 (2004)CrossRefGoogle Scholar
  21. 21.
    Andersson, C., Runeson, P.: A replicated quantitative analysis of fault distributions in complex software systems. IEEE Trans. Softw. Eng. 33(5), 273–286 (2007)CrossRefGoogle Scholar
  22. 22.
    Fenton, N.E., Ohlsson, N.: Quantitative analysis of faults and failures in a complex software system. IEEE Trans. Softw. Eng. 26(8), 797–814 (2000)CrossRefGoogle Scholar
  23. 23.
    Bhowan, U., Johnston, M., Zhang, M., Yao, X.: Evolving diverse ensembles using genetic programming for classification with unbalanced data. IEEE Trans. Evol. Comput. 17(3), 368–386 (2013)CrossRefGoogle Scholar
  24. 24.
    Mauša, G., Galinac Grbac, T., Dalbelo Bašić, B.: Software defect prediction with bug-code analyzer - a data collection tool demo. In: Proceedings of SoftCOM 2014 (2014)Google Scholar
  25. 25.
    Mauša, G., Perković, P., Galinac Grbac, T., Štajduhar, I.: Techniques for bug-code linking. In: Proceedings of SQAMIA 2014, pp. 47–55 (2014)Google Scholar
  26. 26.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2nd edn. Springer, Heidelberg (2009)CrossRefzbMATHGoogle Scholar
  27. 27.
    Zimmermann, T., Nagappan, N.: Predicting defects using network analysis on dependency graphs. In: Proceedings of the 30th International Conference on Software Engineering. ICSE 2008, pp. 531–540. ACM, New York (2008)Google Scholar
  28. 28.
    Bender, R.: Quantitative risk assessment in epidemiological studies investigating threshold effects. Biometrical J. 41(3), 305–319 (1999)CrossRefzbMATHGoogle Scholar
  29. 29.
    Bhowan, U., Johnston, M., Zhang, M., Yao, X.: Reusing genetic programming for ensemble selection in classification of unbalanced data. IEEE Trans. Evol. Comput. 18, 893–908 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of EngineeringUniversity of RijekaRijekaCroatia

Personalised recommendations