Advertisement

Power Means in Success Likelihood Index Method

  • Emilio Torres-ManzaneraEmail author
  • Susana Montes
  • Irene Díaz
  • Lucía Zapico
  • Baltasar Gil
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 643)

Abstract

The Successive Likelihood Index Method establishes the degree of liability, and therefore the corresponding compensation, of the various errors that have caused an accident. From an expert judgment, the successive likelihood index of each error is calculated by a weighted arithmetic mean of their opinions. In this work we have considered other averaging functions for aggregating this information and we have studied their behavior. In particular, we have studied in detail the case of power means applied to the accident of the oil tanker Aegean Sea.

Keywords

Weighted power means Success Likelihood Index Aegean Sea 

Notes

Acknowledgment

The research in this communication has been supported in part by MINECO-TIN2014-59543-P and by PCTI-Estancias de personal investigador en empresas del Principado de Asturias. Their financial supports are gratefully acknowledged.

References

  1. 1.
    Aneziris, O.N., Papazoglou, I.A., Mud, M.L., Damen, M., Kuiper, J., Baksteen, H., Ale, B.J., Bellamy, L.J., Hale, A.R., Bloemhoff, A., Post, J.G., Oh, J.: Towards risk assessment for crane activities. Saf. Sci. 46, 872–884 (2008)CrossRefGoogle Scholar
  2. 2.
    Apostolakis, G.E., Bier, V.M., Mosleh, A.: A critique of recent models for human error rate assessment. Reliab. Eng. Syst. Saf. 22, 201–217 (1988)CrossRefGoogle Scholar
  3. 3.
    Beliakov, G., Bustince, H., Calvo, T.: A Practical Guide to Averaging Functions, 1st edn. Springer, Cham (2015)Google Scholar
  4. 4.
    Bellamy, L.J., Geyer, T.A.W., Astley, J.A.: Evaluation of the human contribution to pipework and in-line equipment failure frequencies. HSE Contract Research Report No. 15/1989. UK Health and Safety Executive, Bootle, MerseysideGoogle Scholar
  5. 5.
    Calixto, E.: Human Reliability Analysis in Gas and Oil Reliability Engineering, 2nd edn. Gulf Professional Publishing, Boston (2016)Google Scholar
  6. 6.
    Calixto, E., Lima, G., Firmino, P.: Comparing SLIM, SPAR-H and Bayesian network methodologies. Open J. Saf. Sci. Technol. 3(2), 31–41 (2013)CrossRefGoogle Scholar
  7. 7.
    Calvo, T., Mayor, G., Mesiar, R. (eds.): Aggregation Operators: New Trends and Applications. Springer, Heidelberg (2007)Google Scholar
  8. 8.
    Castiglia, F., Giardina, M.: Analysis of operator human errors in hydrogen refuelling stations: comparison between human rate assessment techniques. Int. J. Hydrog. Energy 38, 1166–1176 (2013)CrossRefGoogle Scholar
  9. 9.
    Desmorat, G., Guarnieri, F., Besnard, D., Desideri, P., Loth, F.: Pouring CREAM into natural gas: the introduction of common performance conditions into the safety management of gas networks. Saf. Sci. 54, 1–7 (2013)CrossRefGoogle Scholar
  10. 10.
    Embrey, D.E., Humphreys, P.C., Rosa, E.A., Kirwan, B., Rea, K.: SLIM-MAUD: an approach to assessing human error probabilities using structured expert judgement. US Nuclear Regulatory Commission, NUREG/CR-3518, Washington DC (1984)Google Scholar
  11. 11.
    Forester, J., Bley, D., Cooper, S., Lois, E., Siu, N., Kolaczkowski, A., Wreathall, J.: Expert elicitation approach for performing ATHEANA quantification. Reliab. Eng. Syst. Saf. 83, 207–220 (2004)CrossRefGoogle Scholar
  12. 12.
    Gil, B., Calvo, P., Garca, C., Camblor, M.: Factores Humanos para la Investigacin de Accidentes Martimos, Ed. ESM (2003)Google Scholar
  13. 13.
    Groth, K.M., Swiler, L.P.: Bridging the gap between HRA research and HRA practice: a Bayesian network version of SPAR-H. Reliab. Eng. Syst. Saf. 115, 33–42 (2013)CrossRefGoogle Scholar
  14. 14.
    Khan, F.I., Amyotte, P.R., DiMattia, D.G.: HEPI: a new tool for human error probability calculation for offshore operation. Saf. Sci. 44, 313–334 (2006)CrossRefGoogle Scholar
  15. 15.
    Kirwan, B.: A Guide to Practical Human Reliability Assessment. Taylor & Francis, London (1994)Google Scholar
  16. 16.
    Troiano, L., Rodríguez-Muiz, L.J.: A statistical study of differences and similarities among aggregation functions. Log. J. IGPL 19(2), 415–424 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Troiano, L., Rodríguez-Muiz, L.J., Marinaro, P., Díaz, I.: Statistical analysis of parametric t-norms. Inf. Sci. 257, 138–162 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Silva, V.A.: O Planejamento de Emergèncias em Refinarias de Petróleo Brasileiras: Um Estudo dos Planos de Refinarias Brasileiras e uma Análise de Acidentes em Refinarias no Mundo e a Apresentaçäo de uma Proposta de Relaçäo de Canários Acidentais para Planejamento. Dissertaçäo (Mestrado em Sistemas de Gestão) Universidade Federal Fluminense, Niterói (2003)Google Scholar
  19. 19.
    Tu, J., Lin, W., Lin, Y.: A Bayes-SLIM based methodology for human reliability analysis of lifting operations. Int. J. Ind. Ergon. 45, 48–54 (2015)CrossRefGoogle Scholar
  20. 20.
    Vestrucci, P.: The logistic model for assessing human error probabilities using the SLIM method. Reliab. Eng. Syst. Saf. 21, 89–196 (1988)CrossRefGoogle Scholar
  21. 21.
    Zimolong, B.: Empirical evaluation of THERP, SLIM and ranking to estimate HEPs. Reliab. Eng. Syst. Saf. 35, 1–11 (1992)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Emilio Torres-Manzanera
    • 1
    Email author
  • Susana Montes
    • 1
  • Irene Díaz
    • 2
  • Lucía Zapico
    • 2
  • Baltasar Gil
    • 3
  1. 1.Department of Statistics and O.R.University of OviedoOviedoSpain
  2. 2.Department of Computer SciencesUniversity of OviedoOviedoSpain
  3. 3.ESM Research InstituteOviedoSpain

Personalised recommendations