Advertisement

Edge Detection Based on Ordered Directionally Monotone Functions

  • Mikel Sesma-SaraEmail author
  • Humberto Bustince
  • Edurne Barrenechea
  • Julio Lafuente
  • Anna Kolsesárová
  • Radko Mesiar
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 643)

Abstract

We present an image edge detection algorithm that is based on the concept of ordered directionally monotone functions, which permit our proposal to consider the direction of the edges at each pixel and perform accordingly. The results of this method are presented to the EUSFLAT 2017 Competition on Edge Detection.

Keywords

Edge detection Image processing Ordered directionally monotonicity Ordered directionally monotone functions 

Notes

Acknowledgments

This work is supported by the research services of Universidad Publica de Navarra and by the project TIN2016-77356-P (AEI/FEDER, UE).

References

  1. 1.
    Barrenechea, E., Bustince, H., Lopez-Molina, C., De Baets, B.: Construction of interval-valued fuzzy relations with application to the generation of fuzzy edge images. IEEE Trans. Fuzzy Syst. 19(5), 819–830 (2011)CrossRefGoogle Scholar
  2. 2.
    Beliakov, G., Bustince, H., Calvo, T.: A Practical Guide to Averaging Functions. Studies in Fuzziness and Soft Computing. Springer (2016)Google Scholar
  3. 3.
    Bezdek, J., Chandrasekhar, R., Attikouzel, Y.: A geometric approach to edge detection. IEEE Trans. Fuzzy Syst. 6, 52–75 (1998)CrossRefGoogle Scholar
  4. 4.
    Bustince, H., Barrenechea, E., Pagola, M., Fernandez, J.: Interval-valued fuzzy sets constructed from matrices: application to edge detection. Fuzzy Sets Syst. 160(13), 1819–1840 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bustince, H., Barrenechea, E., Sesma-Sara, M., Lafuente, J., Mesiar, R., Kolesárová, A.: Ordered directionally monotone functions. Justification and Application. Submitted to IEEE Transactions on Fuzzy SystemsGoogle Scholar
  6. 6.
    Bustince, H., Fernandez, J., Kolesárová, A., Mesiar, R.: Directional monotonicity of fusion functions. Eur. J. Oper. Res. 244(1), 300–308 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Canny, J.: Finding edges and lines in images. Technical report, Massachusetts Institute of Technology, Cambridge, MA, USA (1983)Google Scholar
  8. 8.
    Choquet, G.: Theory of capacities. Annales de l’institut Fourier 5, 131–295 (1954)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gonzalez-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D.: On the choice of the pair conjunction-implication into the fuzzy morphological edge detector. IEEE Trans. Fuzzy Syst. 23(4), 872–884 (2015)CrossRefGoogle Scholar
  10. 10.
    Grabisch, M., Marichal, J.L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, Cambridge (2009)CrossRefzbMATHGoogle Scholar
  11. 11.
    Kovesi, P.D.: MATLAB and Octave functions for computer vision and image processing. http://www.peterkovesi.com/matlabfns/
  12. 12.
    Lopez-Molina, C., Bustince, H., Fernandez, J., Couto, P., De Baets, B.: A gravitational approach to edge detection based on triangular norms. Pattern Recogn. 43, 3730–3741 (2010)CrossRefzbMATHGoogle Scholar
  13. 13.
    Medina-Carnicer, R., Munoz-Salinas, R., Yeguas-Bolivar, E., Diaz-Mas, L.: A novel method to look for the hysteresis thresholds for the Canny edge detector. Pattern Recogn. 44(6), 1201–1211 (2011)CrossRefGoogle Scholar
  14. 14.
    Paternain, D., Bustince, H., Pagola, M., Sussner, P., Kolesárová, A., Mesiar, R.: Capacities and overlap indexes with an application in fuzzy rule-based classification systems. Fuzzy Sets Syst. 305, 70–94 (2016)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Mikel Sesma-Sara
    • 1
    • 2
    Email author
  • Humberto Bustince
    • 1
    • 2
  • Edurne Barrenechea
    • 1
    • 2
  • Julio Lafuente
    • 1
  • Anna Kolsesárová
    • 3
  • Radko Mesiar
    • 4
  1. 1.Universidad Pública de NavarraPamplonaSpain
  2. 2.Institute of Smart CitiesPamplonaSpain
  3. 3.Institute of Information Engineering, Automation and MathematicsSlovak University of TechnologyBratislavaSlovakia
  4. 4.Department of Mathematics and Descriptive Geometry, Faculty of Civil EngineeringSlovak University of TechnologyBratislavaSlovakia

Personalised recommendations