Advertisement

Modeling Trends in the Hierarchical Fuzzy System for Multi-criteria Evaluation of Medical Data

  • Piotr ProkopowiczEmail author
  • Dariusz Mikołajewski
  • Emilia Mikołajewska
  • Krzysztof Tyburek
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 643)

Abstract

The paper presents the analysis and application of hierarchical fuzzy system to the problem of evaluation/measurement of the rehabilitation effects in post-stroke patients. Healthy people constitute reference group. Prevalence and impact of the stroke-related disorders on Health-Related Quality of Life (HRQoL) as a recognized and important outcome after stroke is huge. Quick, valid and reliable assessment of HRQoL in people after stroke constitutes a worldwide significant problem for scientists and clinicians - there are many tools, but no one fulfills all requirements or has prevailing advantages. Evaluation model presented here is improved version of earlier attempts and applies the potential of fuzzy systems for linguistic modeling of rules. It provides a great advantage as there are experienced clinicians working on the improvement of the rehabilitation methods but there is no intuitive formal model to measure their effects. The innovative element here is the use of Ordered Fuzzy Number model. It is a good tool for modeling the trends in information used to create the fuzzy rules of small fuzzy systems which together form a hierarchical fuzzy evaluation model.

Keywords

Ordered Fuzzy Number Kosinski’s Fuzzy Number Fuzzy system Hierarchical fuzzy system Linguistic modeling Stroke rehabilitation Health-related quality of life 

References

  1. 1.
    Buckley, J.J., Eslami, E.: Advances in Soft Computing: An Introduction to Fuzzy Logic and Fuzzy Sets. Physica-Verlag GmbH, Heidelberg (2002)CrossRefzbMATHGoogle Scholar
  2. 2.
    Czerniak, J.M., Dobrosielski, W.T., Iwona, F.: Some cases of comparing fuzzy numbers using defuzzificators on the catalog of ofn shapes. In: Prokopowicz, P., et al. (eds.) Theory and Applications of Ordered Fuzzy Numbers: A Tribute to Professor Witold Kosński. Studies in Fuzziness and Soft Computing, vol. 356. Springer (2017, in print)Google Scholar
  3. 3.
    Dubois, D., Prade, H.: Operations on fuzzy numbers. Int. J. Syst. Sci. 9(6), 613–626 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dubois, D., Prade, H.: Gradual inference rules in approximate reasoning. Inf. Sci. 61(1), 103–122 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Hüllermeier, E.: Association rules for expressing gradual dependencies. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) Principles of Data Mining and Knowledge Discovery. PKDD 2002, pp. 200–211. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Klimkiewicz, P., Kubsik, A., Woldańska-Okońska, M.: NDT-Bobath method used in the rehabilitation of patients with a history of ischemic stroke. Wiad. Lek. 65(2), 102–107 (2012)Google Scholar
  7. 7.
    Kollen, B.J., Lennon, S., Lyons, B., Wheatley-Smith, L., Scheper, M., Buurke, J.H., Halfens, J., Geurts, A.C., Kwakkel, G.: The effectiveness of the Bobath concept in stroke rehabilitation: what is the evidence? Stroke 40(4), 89–97 (2009)CrossRefGoogle Scholar
  8. 8.
    Kosiński, W., Prokopowicz, P., Rosa, A.: Defuzzification functionals of ordered fuzzy numbers. IEEE Trans. Fuzzy Syst. 21(6), 1163–1169 (2013)CrossRefGoogle Scholar
  9. 9.
    Kosiński, W., Prokopowicz, P., Kacprzak, D.: Fuzziness - representation of dynamic changes by ordered fuzzy numbers. In: Seising, R. (ed.) Views on Fuzzy Sets and Systems from Different Perspectives: Philosophy and Logic, Criticisms and Applications, pp. 485–508. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Kosiński, W., Prokopowicz, P., Ślȩzak, D.: Ordered fuzzy numbers. Bull. Polish Acad. Sci. Math. 51(3), 327–338 (2003)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Kosiński, W., Prokopowicz, P., Ślȩzak, D.: On algebraic operations on fuzzy numbers. In: Kłopotek, M.A., et al. (eds.) Intelligent Information Processing and Web Mining: Proceedings of the International IIS: IIPWM 2003 Conference Held in Zakopane, Poland, 2–5 June 2003, pp. 353–362. Springer, Heidelberg (2003)Google Scholar
  12. 12.
    Lee, M.L., Chung, H.Y., Yu, F.M.: Modeling of hierarchical fuzzy systems. Fuzzy Sets Syst. 138(2), 343–361 (2003)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Mikołajewska, E.: NDT-Bobath method in normalization of muscle tone in post-stroke patients. Adv. Clin. Exp. Med. 21(4), 513–517 (2012)Google Scholar
  14. 14.
    Mikołajewska, E.: Associations between results of post-stroke NDT-Bobath rehabilitation in gait parameters, ADL and hand functions. Adv. Clin. Exp. Med. 22(5), 731–738 (2013)Google Scholar
  15. 15.
    Mikołajewska, E., Prokopowicz, P., Mikołajewski, D.: Computational gait analysis using fuzzy logic for everyday clinical purposes - preliminary findings. Bio-Algorithms Med-Syst. 13(1), 37–42 (2017)Google Scholar
  16. 16.
    Pedrycz, W., Gomide, F.: An Introduction to Fuzzy Sets: Analysis and Design. With a Foreword by Lotfi A. Zadeh. MIT Press, Cambridge (1998)Google Scholar
  17. 17.
    Pickard, A.S., Johnson, J.A., Feeny, D.H.: Responsiveness of generic health-related quality of life measures in stroke. Qual. Life Res. 14(1), 207–219 (2005)CrossRefGoogle Scholar
  18. 18.
    Prokopowicz, P.: Adaptation of rules in the fuzzy control system using the arithmetic of ordered fuzzy numbers. In: Rutkowski, L., et al. (eds.) Artificial Intelligence and Soft Computing - ICAISC 2008. LNCS, vol. 5097, pp. 306–316. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Prokopowicz, P.: Analysis of the changes in processes using the Kosinski’s fuzzy numbers. Ann. Comput. Sci. Inf. Syst. 8, 121–128 (2016). IEEECrossRefGoogle Scholar
  20. 20.
    Prokopowicz, P.: The directed inference for the Kosinski’s fuzzy number model. In: Proceedings of the Second International Afro-European Conference for Industrial Advancement AECIA 2015, pp. 493–503. Springer International (2016)Google Scholar
  21. 21.
    Prokopowicz, P.: Processing the direction with ordered fuzzy numbers. In: Prokopowicz, P., et al. (eds.) Theory and Applications of Ordered Fuzzy Numbers: A Tribute to Professor Witold Kosiński. Studies in Fuzziness and Soft Computing, vol. 356. Springer (2017, in print)Google Scholar
  22. 22.
    Prokopowicz, P., Czerniak, J., Mikołajewski, D., Apiecionek, Ł., Ślȩzak, D.: Theory and Applications of Ordered Fuzzy Numbers: A Tribute to Professor Witold Kosiński. Studies in Fuzziness and Soft Computing, vol. 356. Springer (2017) (in print)Google Scholar
  23. 23.
    Prokopowicz, P., Golsefid, S.: Aggregation operator for ordered fuzzy numbers concerning the direction. In: Rutkowski, L., et al. (eds.) Artificial Intelligence and Soft Computing. LNCS, vol. 8467, pp. 267–278. Springer International, Cham (2014)CrossRefGoogle Scholar
  24. 24.
    Prokopowicz, P., Mikolajewska, E., Mikolajewski, D., Kotlarz, P.: Fuzzy system as an assessment tool for analysis of the health-related quality of life for the people after stroke. In: Rutkowski, L., et al. (eds.) Artificial Intelligence and Soft Computing. LNAI, vol. 10245, pp. 710–721. Springer, Cham (2017)CrossRefGoogle Scholar
  25. 25.
    Prokopowicz, P., Mikolajewska, E., Mikolajewski, D., Kotlarz, P.: Traditional vs ofn-based analysis of temporo-spatial gait parameters. In: Prokopowicz, P., et al. (eds.) Theory and Applications of Ordered Fuzzy Numbers: A Tribute to Professor Witold Kosński. Studies in Fuzziness and Soft Computing, vol. 356. Springer (2017) (in print)Google Scholar
  26. 26.
    Prokopowicz, P., Pedrycz, W.: The directed compatibility between ordered fuzzy numbers - a base tool for a direction sensitive fuzzy information processing. In: Rutkowski, L., et al. (eds.) Artificial Intelligence and Soft Computing. LNCS, vol. 9119, pp. 249–259. Springer International, Cham (2015)CrossRefGoogle Scholar
  27. 27.
    Raju, G.V.S., Zhou, J., Kisner, R.A.: Hierarchical fuzzy control. Int. J. Control 54(5), 1201–1216 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Torra, V.: A review of the construction of hierarchical fuzzy systems. Int. J. Intell. Syst. 17(5), 531–543 (2002)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Piotr Prokopowicz
    • 1
    Email author
  • Dariusz Mikołajewski
    • 1
  • Emilia Mikołajewska
    • 2
  • Krzysztof Tyburek
    • 1
  1. 1.Institute of Mechanics and Applied Computer ScienceKazimierz Wielki UniversityBydgoszczPoland
  2. 2.Department of Physiotherapy, Ludwik Rydygier Collegium MedicumNicolaus Copernicus UniversityBydgoszczPoland

Personalised recommendations