Is Fuzzy Number the Right Result of Arithmetic Operations on Fuzzy Numbers?

  • Andrzej Piegat
  • Marek LandowskiEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 643)


Present versions of fuzzy arithmetic (FA) are not ideal. For some computational problems they deliver credible results. However for many other problems the results are less credible or sometimes clearly incredible. Reason of this state of matter is the fact that present FA-versions partially or fully (depending on a method) do not possess mathematical properties that are necessary for achieving correct calculation results as: distributivity law, cancellation law, neutral elements of addition and multiplication, property of restoration, possibility of decomposition of calculation in parts, ability of credible equations’ solving, property of delivering universal algebraic solutions, possibility of formula transformation, and other. Lack of above properties is, in the authors’ opinion, caused by incorrect assumption of all existing FA-versions that result of arithmetic operations on unidimensional fuzzy intervals is also a unidimensional fuzzy interval. In the paper authors show that the correct result is a multidimensional fuzzy set and present a fuzzy arithmetic based on this proposition, which possess all necessary mathematical properties and delivers credible results.


Fuzzy arithmetic Fuzzy computations Uncertainty theory Granular computing Soft computing Artificial intelligence 


  1. 1.
    Bader, F., Nipkov, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
  2. 2.
    Baoding, L.: Uncertainty Theory, 4th edn. Springer, Berlin (2015)zbMATHGoogle Scholar
  3. 3.
    Birkhoff, G.: Lattice Theory. Colloquium Publications, vol. 25. American Mathematical Society (1967)Google Scholar
  4. 4.
    Dubois, D., Prade, H.: Operations on fuzzy numbers. Int. J. Syst. Sci. 9(6), 613–626 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dymova, L.: Soft Computing in Economics and Finance. Springer, Berlin (2011)CrossRefGoogle Scholar
  6. 6.
    Hanss, M.: Applied Fuzzy Arithmetic. Springer, Berlin (2005)zbMATHGoogle Scholar
  7. 7.
    Hukuhara, M.: Integration des applications measurables don’t la valeur est un compact convexe. Funkcialaj Ekvacioj 10, 205–223 (1967)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Kaucher, E.: Interval analysis in extended interval space IR. Computing 2(Supplement), 33–49 (1980)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Kaufmann, A., Gupta, M.M.: Introduction to Fuzzy Arithmetic. Van Nostrand Reinhold, New York (1991)zbMATHGoogle Scholar
  10. 10.
    Klir, G.J.: Fuzzy arithmetic with requisite constraints. Fuzzy Sets Syst. 91, 165–175 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Konar, A.: Artificial Intelligence and Soft Computing. CRC Press, London, New York (2000)Google Scholar
  12. 12.
    Kosinski, W., Prokopowicz, P., Slezak, D.: Ordered fuzzy numbers. Bull. Pol. Acad. Sci. Ser. Sci. Math. 51(3), 327–338 (2003)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Kovalerchuk, B., Kreinovich, V.: Comparison of applied tasks with intervals, fuzzy sets and probability approaches. In: Proceedings of 2016 IEEE International Conference on Fuzzy Systems (FUZZ), 24–29 July 2016, Vancouver, Canada, pp. 1478–1483 (2016)Google Scholar
  14. 14.
    Lodwick, W.A., Dubois, D.: Interval linear systems as necessary step in fuzzy linear systems. Fuzzy Sets Syst. 281, 227–251 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Mazandarani, M., Pariz, N., Kamyad, A.V.: Granular differentiability of fuzzy-number-valued functions. IEEE Trans. Fuzzy Syst. (2017). doi: 10.1109/TFUZZ.2017.2659731
  16. 16.
    Mazarbhuiya, F.A., Mahanta, A.K.,Baruah, H.K.: Solution of the fuzzy equation \(A+X=B\) using the method of superimposition. Appl. Math. 2, 1039–1045.
  17. 17.
    Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. Society for Industrial and Applied Mathematics, Philadelphia (2009)CrossRefzbMATHGoogle Scholar
  18. 18.
    Pedrycz, W., Skowron, A., Kreinovich, V.: Handbook of Granular Computing. Wiley, Chichester (2008)CrossRefGoogle Scholar
  19. 19.
    Piegat, A.: Fuzzy modeling and control. Physica-Verlag, A Springer-Verlag Company, Heidelberg, New York (2001)CrossRefzbMATHGoogle Scholar
  20. 20.
    Piegat, A., Landowski, M.: Is the conventional interval-arithmetic correct? J. Theor. Appl. Comput. Sci. 6(2), 27–44 (2012)Google Scholar
  21. 21.
    Piegat, A., Landowski, M.: Two interpretations of multidimensional RDM interval arithmetic - multiplication and division. Int. J. Fuzzy Syst. 15(4), 486–496 (2013)MathSciNetGoogle Scholar
  22. 22.
    Piegat, A., Landowski, M.: Correctness checking of uncertain-equation solutions on example of the interval-modal method. In: Atanasov, T., et al. (ed.) Modern approaches in Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets and Related Topics. Foundations, SRI PAS-IBS PAN, Warsaw, Poland, vol.1, pp. 159–170 (2014)Google Scholar
  23. 23.
    Piegat, A., Plucinski, M.: Fuzzy number addition with the application of horizontal membership functions. Sci. World J., 1–16, Article ID: 367214 (2015). (Hindawi Publishing Corporation)Google Scholar
  24. 24.
    Piegat, A., Landowski, M.: Horizontal membership function and examples of its applications. Int. J. Fuzzy Syst. 17(1), 22–30 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Piegat, A., Plucinski, M.: Computing with Words with the use of inverse RDM models of membership functions. Int. J. Appl. Math. Comput. Sci. 25(3), 675–688 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Piegat, A., Landowski, M.: Fuzzy arithmetic type 1 with horizontal membership functions. In: Kacprzyk, J., Kreinovich, V. (eds.) Uncertainty Modeling. Springer (2017)Google Scholar
  27. 27.
    Popova, E.D.: Algebraic solutions to a class of interval equations. J. Univ. Comput. Sci. 4(1), 48–67 (1998)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Sevastjanov, F.A., Dymova, L.: A new method for solving interval and fuzzy equations: linear case. Inf. Sci. 179, 925–937 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Stefanini, L.: A generalization of Hukuhara difference and division for interval and fuzzy arithmetic. Fuzzy Sets Syst. 161, 1564–1584 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Faculty of Computer Science and Information SystemsWest Pomeranian University of TechnologySzczecinPoland
  2. 2.Department of Mathematical MethodsMaritime University of SzczecinSzczecinPoland

Personalised recommendations