Advertisement

Fuzzy Decision Matrices in Case of a Discrete Underlying Fuzzy Probability Measure

  • Ondřej PavlačkaEmail author
  • Pavla Rotterová
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 643)

Abstract

Decision matrices represent a common tool for solving decision-making problems under risk. Elements of the matrix express the outcomes if a decision-maker chooses the particular alternative and the particular state of the world occurs. We deal with the problem of extension of a decision matrix to the case of fuzzy states of the world and fuzzy outcomes of alternatives. We consider the approach based on the idea that a fuzzy decision matrix determines a collection of fuzzy rule-based systems. The aim of the paper is to study extension of this approach to the case where the states of the world are fuzzy sets on the finite universal set and the probabilities of elementary events are determined by a tuple of fuzzy probabilities. We derive the formulas for computations of the fuzzy expected values and fuzzy variances of the outcomes of alternatives, based on which the alternatives can be compared.

Keywords

Decision matrices Decision-making under risk Fuzzy probability measure Fuzzy states of the world Fuzzy rule-based systems 

Notes

Acknowledgments

The paper is supported by the grant IGA_PrF_2017_019 Mathematical Models of the Internal Grant Agency of Palacký University Olomouc. The support is greatly acknowledged.

References

  1. 1.
    Alonso, J.M., Castiello, C., Mencar, C.: Interpretability of fuzzy systems: current research trends and prospects. In: Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence, pp. 219–237. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-43505-2_14 CrossRefGoogle Scholar
  2. 2.
    Baudrit, C., Couso, I., Dubois, D.: Joint propagation of probability and possibility in risk analysis: towards a formal framework. Int. J. Approx. Reason. 45, 82–105 (2007). doi: 10.1016/j.ijar.2006.07.001 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Dubois, D., Prade, H.: Fuzzy sets, probability and measurement. Eur. J. Oper. Res. 40(2), 135–154 (1989). doi: 10.1016/0377-2217(89)90326-3 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ganoulis, J.: Engineering Risk Analysis of Water Pollution: Probabilities and Fuzzy Sets. VCH, Weinheim (2008)zbMATHGoogle Scholar
  5. 5.
    Herrera, F., Alonso, S., Chiclana, F., Herrera-Viedma, E.: Computing with words in decision making: foundations, trends and prospects. Fuzzy Optim. Decis. Ma. 8, 337–364 (2009). doi: 10.1007/s10700-009-9065-2 CrossRefzbMATHGoogle Scholar
  6. 6.
    Chankong, V., Haimes, Y.Y.: Multiobjective Decision Making: Theory and Methodology. Elsevier Science B.V., New York (1983)zbMATHGoogle Scholar
  7. 7.
    Okuda, T., Tanaka, H., Asai, K.: Formulation of fuzzy decision problems with fuzzy information using probability of fuzzy events. Inform. Control 38(2), 135–147 (1978). doi: 10.1016/S0019-9958(78)90151-1 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Özkan, I., Türken, I.B.: Uncertainty and fuzzy decisions. In: Banerjee, S., et al. (eds.) Chaos Theory in Politics. Understanding Complex Systems, pp. 17–27. Springer, Dordrecht (2014). doi: 10.1007/978-94-017-8691-1_2 CrossRefGoogle Scholar
  9. 9.
    Pan, Y., Yuan, B.: Bayesian inference of fuzzy probabilities. Int. J. Gen. Syst. 26(1–2), 73–90 (1997). doi: 10.1080/03081079708945170 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Pavlačka, O., Talašová, J.: Application of the fuzzy weighted average of fuzzy numbers in decision making models. In: Bodenhofer, U., Novák, V., Štěpnička, M. (eds.) New Dimensions in Fuzzy Logic and Related Technologies, Vol II. Proceedings of the 5th EUSFLAT Conference, pp. 455–462. Ostravská univerzita, Ostrava (2007)Google Scholar
  11. 11.
    Pavlačka, O.: Modeling uncertain variables of the weighted average operation by fuzzy vectors. Inform. Sci. 181(22), 4969–4992 (2011). doi: 10.1016/j.ins.2011.06.022 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Pavlačka, O., Rotterová, P.: Fuzzy decision matrices viewed as fuzzy rule-based systems. In: Kocourek, A., Vavroušek, M. (eds.) Proceedings of the 34th International Conference Mathematical Methods in Economics, pp. 641–646. Technical University of Liberec, Liberec (2016)Google Scholar
  13. 13.
    Rotterová, P., Pavlačka, O.: Probabilities of fuzzy events and their use in decision matrices. Int. J. Math. Op. Res. 9(4), 423–435 (2016). doi: 10.1504/IJMOR.2016.10000341 MathSciNetCrossRefGoogle Scholar
  14. 14.
    Rotterová, P., Pavlačka, O.: New approach to fuzzy decision matrices. Submitted to Acta Polytechnica HungaricaGoogle Scholar
  15. 15.
    Sugeno, M.: Industrial Applications of Fuzzy Control. Elsevier Science Pub. Co., New York (1985)zbMATHGoogle Scholar
  16. 16.
    Talašová, J.: Fuzzy Methods of Multiple Criteria Evaluation and Decision Making (in Czech). Publishing House of Palacký University, Olomouc (2003)Google Scholar
  17. 17.
    Talašová, J., Pavlačka, O.: Fuzzy probability spaces and their applications in decision making. Austrian J. Statist. 35(2&3), 347–356 (2006). doi: 10.17713/ajs.v35i2&3.382 Google Scholar
  18. 18.
    Yoon, K.P., Hwang, C.: Multiple Attribute Decision Making: An Introduction. SAGE Publications, California (1995)CrossRefGoogle Scholar
  19. 19.
    Zadeh, L.A.: Probability measures of fuzzy events. J. Math. Anal. Appl. 23(2), 421–427 (1968). doi: 10.1016/0022-247X(68)90078-4 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning - I. Inform. Sci. 8, 199–245 (1975). doi: 10.1016/0020-0255(75)90036-5 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Mathematical Analysis and Applications of Mathematics, Faculty of SciencePalacký University OlomoucOlomoucCzech Republic

Personalised recommendations