Abstract
This chapter discusses current research regarding the teaching and learning of concepts in linear algebra with the aid of (digital) resources. In particular, it looks into potential of digital resources to foster students’ competencies in linear algebra . The aim of the chapter is to explain how technology-enhanced teaching and learning environments may contribute to developing competencies in multiple representations, visualization as well as procedural and conceptual understanding. The chapter culminates with a suggested nested model of three modes of thinking of concepts in linear algebra , which is suitable for designing teaching and learning environments.
Similar content being viewed by others
References
Bagley, S., Rasmussen, C., & Zandieh, M. (2015). Inverse, composition, and identity: The case of function and linear transformation. The Journal of Mathematical Behavior, 37, 36–47.
Britton, S., & Henderson, J. (2009). Linear algebra revisited: An attempt to understand students’ conceptual difficulties. International Journal of Mathematical Education in Science and Technology, 40(7), 963–974.
Bussi, M. B., & Mariotti, M. A. (2008). Semiotic mediation in the mathematics classroom: Artifacts and signs after a Vygotskian perspective. Handbook of international research in mathematics education, New York, 746–783.
Buteau, C., Muller, E., Marshall, N., Sacristán, A. I., & Mgombelo, J. (2016). Undergraduate Mathematics Students Appropriating Programming as a Tool for Modeling, Simulation, and Visualization: A Case Study. Digital Experiences in Mathematics Education, 2(2), 142–166.
Caridade, C. M. R., Encinas, A. H., Martín-Vaquero, J., & Queiruga-Dios, A. (2015). CAS and real life problems to learn basic concepts in Linear Algebra course. Computer Applications in Engineering Education, 23(4), 567–577.
Carlson, D., Johnson, C. R., Lay, D. C., & Porter, A. D. (1993). The Linear Algebra Curriculum Study Group recommendations for the first course in linear algebra. The College Mathematics Journal, 24(1), 41–46.
Day, J. M., & Kalman, D. (1999). Teaching linear algebra: What are the questions. Department of Mathematics at American University in Washington DC, 1–16.
De Villiers, M. (1998). To teach definitions in geometry or teach to define? In Proceedings of the 22 nd Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 2–248).
Díaz, A., García López, A., & Villa Cuenca, A. D. L. (2011). An example of learning based on competences: Use of Maxima in Linear Algebra for Engineers. International Journal For Technology in Mathematics Education, 18(4), 177–181.
Dios, A. Q., Martínez, V. G., Encinas, A. H., & Encinas, L. H. (2012). The computer as a tool to acquire and evaluate skills in math courses. In 4th International Conference on computer research and development, IPCSIT (Vol. 39).
Donevska-Todorova, A. (2015). Conceptual Understanding of Dot Product of Vectors in a Dynamic Geometry Environment. Electronic Journal of Mathematics & Technology, 9(3).
Donevska-Todorova, A. (2016). Procedural and Conceptual Understanding in Undergraduate Linear Algebra. In Krainer, K. & Vondrova, N. (Eds)., Proceedings INDRUM2016.
Donevska-Todorova, A. & Trgalova, J. (2017). Learning Mathematics with Technology. A Review of Recent CERME Research. In Dooley, T. & Gueudet, G. (Eds.). Proceedings of the Tenth Congress of the European Society for Research in Mathematics Education (CERME10, February 1 – 5, 2017). Dublin, Ireland: DCU Institute of Education and ERME.
Donevska-Todorova, A. (2017a). Utilizing Technology to facilitate the transition between the Upper Secondary- to Tertiary Level of Linear Algebra. (unpublished PhD Thesis).
Donevska-Todorova, A. (2017b). Recursive Exploration Space for Concepts in Linear Algebra. In Tabach, M. & Siller, S. (Eds). Uses of Technology in K-12 mathematics Education: Tools, topics and Trends. Springer (in press).
Dorier, J. L. (2000). Epistemological Analysis of the Genesis of the Theory of Vector Spaces. In: Dorier, J. L. (Ed.). On the Teaching of Linear Algebra. Mathematics Education Library, vol 23. Springer, Dordrecht.
Dray, T., & Manogue, C. A. (2008). The geometry of the dot and cross products. AMC, 10, 12.
Dreyfus, T., Hillel, J., & Sierpinska, A. (1998). Cabri-based linear algebra: Transformations. European Research in Mathematics Education I, 209–221.
Drijvers, P., Ball, L., Barzel, B., Heid, M. K., Cao, Y. & Maschietto, M. (2016). Uses of Technology in Lower Secondary Mathematics Education. ICME-13 Topical Survey, pp. 1–34. Springer International Publishing. https://doi.org//10.1007/978-3-319-33666-4.
Dubinsky, E., & McDonald, M. A. (2001). APOS: A constructivist theory of learning in undergraduate mathematics education research. In The teaching and learning of mathematics at university level (pp. 275–282). Springer Netherlands.
García, A., García, F., Del Rey, Á. M., Rodríguez, G., & De La Villa, A. (2014). Changing assessment methods: New rules, new roles. Journal of Symbolic Computation, 61, 70–84.
García López, A., García Mazario, F., & Villa Cuenca, A. D. L. (2011). Could it be possible to replace DERIVE with MAXIMA? The International Journal for Technology in Mathematics Education, 18(3), 137–142.
Guin, D., & Trouche, L. (1998). The complex process of converting tools into mathematical instruments: The case of calculators. International Journal of Computers for Mathematical Learning, 3(3), 195–227.
Falcade, R., Laborde, C., & Mariotti, M. A. (2007). Approaching functions: Cabri tools as instruments of semiotic mediation. Educational Studies in Mathematics, 66(3), 317–333.
Francis, K., Khan, S., & Davis, B. (2016). Enactivism, spatial reasoning and coding. Digital Experiences in Mathematics Education, 2(1), 1–20.
Hannah, J., Stewart, S., & Thomas, M. O. J. (2016). Developing conceptual understanding and definitional clarity in linear algebra through the three worlds of mathematical thinking, Teaching Mathematics and its Applications: An International Journal of the IMA, 35(4), 216–235.
Hegedus, S., Dalton, S., & Moreno-Armella, L. (2007). Technology that mediates and participates in mathematical cognition. Proceedings of CERME5, WG 9 Tools and technologies in mathematical didactics 1331, pp. 1419–1428.
Heid, M. K., & Edwards, M. T. (2001). Computer algebra systems: revolution or retrofit for today’s mathematics classrooms? Theory into Practice, 40(2), 128–136.
Hillel, J. (2000). Modes of description and the problem of representation in linear algebra. In On the teaching of linear algebra (pp. 191–207). Springer Netherlands.
Janetzko, H.-D. (2016). The GUI CATO – how natural usage of CAS with CATO modified the mathematical lectures and the interface itself. In the Proceedings of the 22nd Conference on Applications of Computer Algebra, ACA, August 2016, Kassel, Germany.
Jin, L., & Bi, C. (2011, July). Application of matlab software for linear algebra. In Circuits, Communications and System (PACCS), 2011 Third Pacific-Asia Conference on (pp. 1–3). IEEE.
Konyalioglu, A. C., Isik, A., Kaplan, A., Hizarci, S., & Durkaya, M. (2011). Visualization approach in teaching process of linear algebra. Procedia-Social and Behavioral Sciences, 15, 4040–4044.
Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland [KMK] (2012). Bildungsstandards im Fach Mathematik für die Allgemeine Hochschulreife (Beschluss der Kultusministerkonferenzvom 18.10.2012). Available at: http://www.kmk.org/fileadmin/Dateien/veroeffentlichungen_beschluesse/2012/2012_10_18-Bildungsstandards-Mathe-Abi.pdf.
Lagrange, J. B., Artigue, M., Laborde, C., & Trouche, L. (2001). A meta study on IC technologies in education. Towards a multidimensional framework to tackle their integration. In Proceedings of the 25 th Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 1–111).
Love, B., Hodge, A., Grandgenett, N., & Swift, A. W. (2014). Student learning and perceptions in a flipped linear algebra course. International Journal of Mathematical Education in Science and Technology, 45(3), 317–324.
Matthews, D. (2016). “Do academic social networks share academics’ interests?”. Times Higher Education. Retrieved 2016-04-22.
NCTM - National Council of Teachers of Mathematics (2000). Principles and Standards for School Mathematics. Reston, Virginia, USA.
Oldenburg, R. (2016). A Transparent Rule Based CAS to support Formalizationof Knowledge. In the Proceedings of the 22nd Conference on Applications of Computer Algebra, ACA, August 2016, Kassel, Germany.
Roegner, K., & Seiler, R. (2012). Das multimediale Lehr-und Lernsystem MUMIE/TUMULT in der universitären Mathematikausbildung. Hochschuldidaktik–Mathematik und Informatik. Symposiumsband „Verbesserung der Hochschullehre in Mathematik und Informatik”, 115–122.
Sinclair, N., Bartolini Bussi, M. G., de Villiers, M., Jones, K., Kortenkamp, U., Leung, A. & Owens, K. (2016). Recent research on geometry education: an ICME-13 survey team report ZDM Mathematics Education 48(5), pp 691–719.
Sierpinska, A. (2000). On Some Aspects of Students’ Thinking in Linear Algebra. In Dorier, J.-L. (Ed.). On the teaching of linear algebra. Mathematics Education Library, vol 23. Springer, Dordrecht.
Stewart, S., & Thomas, M. O. J. (2004). The learning of linear algebra concepts: Instrumentation of CAS calculators. Proceedings of the 9th Asian Technology Conference in Mathematics (ATCM), Singapore, 377–386.
Strang, G. (2005). Linear Algebra. Video Lectures. MIT OpenCourseWare. https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures/. Last access 25.10.2017.
Talbert, R. (2014). Inverting the linear algebra classroom. Primus, 24(5), 361–374.
Tall, D. (2004). Thinking through three worlds of mathematics. In Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 281–288).
Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational studies in mathematics, 12(2), 151–169.
Trouche, L. (2005). Instrumental genesis, individual and social aspects. In The didactical challenge of symbolic calculators (pp. 197–230). Springer US.
Turgut, M. & Drijvers, P. (2017). Students’ Thinking Modes and the Emergence of Signs in Learning Linear Algebra. In the Proceedings of ICME 13 Topical Survey (to appear).
Varbanova, E. & Durcheva, M. (2016). Developing Competences in Higher Mathematics in a CAS Supported Learning Environment. In the Proceedings of the 22nd Conference on Applications of Computer Algebra, ACA, August 2016, Kassel, Germany.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this chapter
Cite this chapter
Donevska-Todorova, A. (2018). Fostering Students’ Competencies in Linear Algebra with Digital Resources. In: Stewart, S., Andrews-Larson, C., Berman, A., Zandieh, M. (eds) Challenges and Strategies in Teaching Linear Algebra. ICME-13 Monographs. Springer, Cham. https://doi.org/10.1007/978-3-319-66811-6_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-66811-6_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-66810-9
Online ISBN: 978-3-319-66811-6
eBook Packages: EducationEducation (R0)