Towards a Framework for Assistance Systems to Support Work Processes in Smart Factories

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10410)


Increasingly, production processes are enabled and controlled by Information Technology (IT), a development being also referred to as “Industry 4.0”. IT thereby contributes to flexible and adaptive production processes, and in this sense factories become “smart factories”. In line with this, IT also more and more supports human workers via various assistance systems. This support aims to both support workers to better execute their tasks and to reduce the effort and time required when working. However, due to the large spectrum of assistance systems, it is hard to acquire an overview and to select an adequate system for a smart factory based on meaningful criteria. We therefore synthesize a set of comparison criteria into a consistent framework and demonstrate the application of our framework by classifying three examples.


Assistance systems Smart factory Production processes 


  1. 1.
    acatech – Deutsche Akademie der Technikwissenschaften: Kompetenzentwicklungsstudie Industrie 4.0 – Erste Ergebnisse und Schlussfolgerungen, München (2016)Google Scholar
  2. 2.
    Anderson, G.F., Hussey, P.S.: Population aging: a comparison among industrialized countries. Health Aff. 19(3), 191–203 (2000)CrossRefGoogle Scholar
  3. 3.
    Büttner, S., Mucha, H., Funk, M., Kosch, T., Aehnelt, M., Robert, S., Röcker, C.: The design space of augmented and virtual reality applications for assistive environments in manufacturing: a visual approach. In: Proceedings of the 10th ACM International Conference on PErvasive Technologies Related to Assistive Environments. ACM (2017)Google Scholar
  4. 4.
    Büttner, S., Sand, O., Röcker, C.: Exploring design opportunities for intelligent worker assistance: a new approach using projetion-based AR and a novel hand-tracking algorithm. In: Braun, A., Wichert, R., Maña, A. (eds.) AmI 2017. LNCS, vol. 10217, pp. 33–45. Springer, Cham (2017). doi: 10.1007/978-3-319-56997-0_3 CrossRefGoogle Scholar
  5. 5.
    Chaloff, J., Lemaitre, G.: Managing Highly-Skilled Labour Migration. OECD Social, Employment and Migration Working Papers (2009). doi: 10.1787/1815199X
  6. 6.
    Fite-Georgel, P.: Is there a reality in industrial augmented reality? In: 2011 10th IEEE International Symposium Mixed and Augmented Reality (ISMAR), pp. 201–210. IEEE (2011)Google Scholar
  7. 7.
    Ganschar, O., Gerlach, S., Hämmerle, M., Krause, T., Schlund, S.: In: Spath, D. (ed.). Produktionsarbeit der Zukunft – Industrie 4.0, pp. 50–56. Fraunhofer Verlag, Stuttgart (2013)Google Scholar
  8. 8.
    Geissbauer, R., Vedso, J., Schrauf, S.: Industry 4.0: Building the digital enterprise. PwC (2015)Google Scholar
  9. 9.
    Gorecky, D., Schmitt, M., Loskyll, M., Zühlke, D.: Human-machine-interaction in the industry 4.0 era. In: Industrial Informatics (INDIN) 2014, pp. 2896–294 (2014)Google Scholar
  10. 10.
    Gurevich, P., Lanir, J., Cohen, B., Stone, R.: TeleAdvisor: a versatile augmented reality tool for remote assistance. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems 2012, pp. 619–622. ACM (2012)Google Scholar
  11. 11.
    Hermann, M., Pentek, T., Otto, B.: Design principles for Industry 4.0 Scenarios. In: HICSS 2016, pp. 3928–3937. IEEE (2016)Google Scholar
  12. 12.
    Jain, D., Sra, M., Guo, J., Marques, R., Wu, R., Chiu, J., Schmandt, C.: Immersive terrestrial scuba diving using virtual reality. In: Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, pp. 1563–1569. ACM (2016)Google Scholar
  13. 13.
    Lucke, D., Constantinescu, C., Westkämper, E.: Smart factory-a step towards the next generation of manufacturing. In: Mitsuishi M., et al. (eds.) Manufacturing Systems and Technologies for the New Frontier, pp. 115–118. Springer, London (2008)Google Scholar
  14. 14.
    Nelles, J., Kuz, S., Mertens, A., Schlick, C. M.: Human-centered design of assistance systems for production planning and control: The role of the human in Industry 4.0. In: Proceedings of the IEEE International Conference Industrial Technology (ICIT) 2016, pp. 2099–2104. IEEE (2016)Google Scholar
  15. 15.
    Nickerson, R.C., Varshney, U., Muntermann, J.: A method for taxonomy development and its application in information systems. Eur. J. Inform. Syst. 2013(22), 336–359 (2013)CrossRefGoogle Scholar
  16. 16.
    Niemöller, C., Metzger, D., Thomas, O.: Design and evaluation of a smart-glasses-based service support system. In: Leimeister, J.M., Brenner, W. (eds.) Proceedings of WI 2017, pp. 106–120 (2017)Google Scholar
  17. 17.
    Röcker, C., Robert, S.: Projektionsbasierte Montageunterstützung mit visueller Fortschrittserkennung. In: visIT Industrie 4.0. Fraunhofer IOSB, Karlsruhe, Germany (2016)Google Scholar
  18. 18.
    Sprague, J.R., Ralph, H.: A framework for the development of decision support systems. MIS Q. 4(1), 1–26 (1980)CrossRefGoogle Scholar
  19. 19.
    Taylor, A.G., Miller, D.P., Bohdan, S.W.: Introduction to Cataloging and Classification. Libraries Unlimited (2000)Google Scholar
  20. 20.
    Robert, S., Büttner, S., Röcker, C., Holzinger, A.: Reasoning under uncertainty: towards collaborative interactive machine learning. In: Holzinger, A. (ed.) Machine Learning for Health Informatics. LNCS, vol. 9605, pp. 357–376. Springer, Cham (2016). doi: 10.1007/978-3-319-50478-0_18 CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  1. 1.Chair of Business Information SystemsUniversity of RostockRostockGermany
  2. 2.Fraunhofer-Institute of Optronics, System Technologies and Image Exploitation, Application Center Industrial Automation (IOSB-INA)LemgoGermany
  3. 3.Ostwestfalen-Lippe University of Applied SciencesLemgoGermany

Personalised recommendations