Quantitative Externalization of Visual Data Analysis Results Using Local Regression Models

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10410)


Both interactive visualization and computational analysis methods are useful for data studies and an integration of both approaches is promising to successfully combine the benefits of both methodologies. In interactive data exploration and analysis workflows, we need successful means to quantitatively externalize results from data studies, amounting to a particular challenge for the usually qualitative visual data analysis. In this paper, we propose a hybrid approach in order to quantitatively externalize valuable findings from interactive visual data exploration and analysis, based on local linear regression models. The models are built on user-selected subsets of the data, and we provide a way of keeping track of these models and comparing them. As an additional benefit, we also provide the user with the numeric model coefficients. Once the models are available, they can be used in subsequent steps of the workflow. A model-based optimization can then be performed, for example, or more complex models can be reconstructed using an inversion of the local models. We study two datasets to exemplify the proposed approach, a meteorological data set for illustration purposes and a simulation ensemble from the automotive industry as an actual case study.


Interactive visual data exploration and analysis Local regression models Externalization of analysis results 



The VRVis Forschungs-GmbH is funded by COMET, Competence Centers for Excellent Technologies (854174), by BMVIT, BMWFW, Styria, Styrian Business Promotion Agency, SFG, and Vienna Business Agency. The COMET Programme is managed by FFG.


  1. 1.
    Anscombe, F.J.: Graphs in statistical analysis. Am. Stat. 27(1), 17–21 (1973)Google Scholar
  2. 2.
    Breiman, L.: Better subset regression using the nonnegative garrote. Technometrics 37(4), 373–384 (1995).
  3. 3.
    Frank, I.E., Friedman, J.H.: A statistical view of some chemometrics regression tools. Technometrics 35(2), 109–135 (1993).
  4. 4.
    Freedman, D.: Statistical Models: Theory and Practice. Cambridge University Press, Cambridge (2005)CrossRefzbMATHGoogle Scholar
  5. 5.
    Gauss, C.: Theoria motus corporum coelestium in sectionibus conicis solem ambientium. sumtibus F. Perthes et I. H. Besser (1809)Google Scholar
  6. 6.
    Haslett, J., Bradley, R., Craig, P., Unwin, A., Wills, G.: Dynamic graphics for exploring spatial data with application to locating global and local anomalies. Am. Stat. 45(3), 234–242 (1991).
  7. 7.
    Holzinger, A.: Interactive machine learning for health informatics: when do we need the human-in-the-loop? Brain Inform. 3(2), 119–131 (2016)CrossRefGoogle Scholar
  8. 8.
    Holzinger, A., Plass, M., Holzinger, K., Crişan, G.C., Pintea, C.-M., Palade, V.: Towards interactive machine learning (iML): applying ant colony algorithms to solve the traveling salesman problem with the human-in-the-loop approach. In: Buccafurri, F., Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-ARES 2016. LNCS, vol. 9817, pp. 81–95. Springer, Cham (2016). doi: 10.1007/978-3-319-45507-5_6 CrossRefGoogle Scholar
  9. 9.
    Huber, P.J.: Robust estimation of a location parameter. Ann. Math. Stat. 35(1), 73–101 (1964).
  10. 10.
    Hund, M., Böhm, D., Sturm, W., Sedlmair, M., Schreck, T., Ullrich, T., Keim, D.A., Majnaric, L., Holzinger, A.: Visual analytics for concept exploration in subspaces of patient groups. Brain Inform. 3(4), 233–247 (2016)CrossRefGoogle Scholar
  11. 11.
    Kandogan, E., Balakrishnan, A., Haber, E., Pierce, J.: From data to insight: work practices of analysts in the enterprise. IEEE Comput. Graph. Appl. 34(5), 42–50 (2014)CrossRefGoogle Scholar
  12. 12.
    Kehrer, J., Filzmoser, P., Hauser, H.: Brushing moments in interactive visual analysis. In: Proceedings of the 12th Eurographics/IEEE - VGTC Conference on Visualization, EuroVis 2010, pp. 813–822. Eurographics Association, Aire-la-Ville, Switzerland (2010)Google Scholar
  13. 13.
    Keim, D., Andrienko, G., Fekete, J.-D., Görg, C., Kohlhammer, J., Melançon, G.: Visual analytics: definition, process, and challenges. In: Kerren, A., Stasko, J.T., Fekete, J.-D., North, C. (eds.) Information Visualization. LNCS, vol. 4950, pp. 154–175. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-70956-5_7 CrossRefGoogle Scholar
  14. 14.
    Keim, D.A., Kohlhammer, J., Ellis, G., Mansmann, F.: Mastering the Information Age - Solving Problems with Visual Analytics. Eurographics Association (2010).
  15. 15.
    Konyha, Z., Lež, A., Matković, K., Jelović, M., Hauser, H.: Interactive visual analysis of families of curves using data aggregation and derivation. In: Proceedings of the 12th International Conference on Knowledge Management and Knowledge Technologies, i-KNOW 2012, pp. 24:1–24:8. ACM, New York (2012)Google Scholar
  16. 16.
    Konyha, Z., Matković, K., Gračanin, D., Jelović, M., Hauser, H.: Interactive visual analysis of families of function graphs. IEEE Trans. Vis. Comput. Graph. 12(6), 1373–1385 (2006)CrossRefGoogle Scholar
  17. 17.
    Lampe, O.D., Hauser, H.: Model building in visualization space. In: Proceedings of Sigrad 2011 (2011)Google Scholar
  18. 18.
    Legendre, A.: Nouvelles méthodes pour la détermination des orbites des comètes. Méthode pour déterminer la longueur exacte du quart du méridien, F. Didot (1805)Google Scholar
  19. 19.
    Matković, K., Freiler, W., Gracanin, D., Hauser, H.: Comvis: a coordinated multiple views system for prototyping new visualization technology. In: 2008 12th International Conference Information Visualisation, pp. 215–220, July 2008Google Scholar
  20. 20.
    Matković, K., Gračanin, D., Splechtna, R., Jelović, M., Stehno, B., Hauser, H., Purgathofer, W.: Visual analytics for complex engineering systems: hybrid visual steering of simulation ensembles. IEEE Trans. Vis. Comput. Graph. 20(12), 1803–1812 (2014)CrossRefGoogle Scholar
  21. 21.
    National Oceanic and Atmospheric Administration: Climate data online (2017). Accessed 19 June 2017
  22. 22.
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Piringer, H., Berger, W., Krasser, J.: HyperMoVal: interactive visual validation of regression models for real-time simulation. Comput. Graph. Forum 29, 983–992 (2010)CrossRefGoogle Scholar
  24. 24.
    Radoš, S., Splechtna, R., Matković, K., Đuras, M., Gröller, E., Hauser, H.: Towards quantitative visual analytics with structured brushing and linked statistics. Comput. Graph. Forum 35(3), 251–260 (2016).
  25. 25.
    Shao, L., Mahajan, A., Schreck, T., Lehmann, D.J.: Interactive regression lens for exploring scatter plots. In: Computer Graphics Forum (Proceedings of EuroVis) (2017, to appear)Google Scholar
  26. 26.
    Shneiderman, B.: Inventing discovery tools: combining information visualization with data mining. Inform. Vis. 1(1), 5–12 (2002)CrossRefzbMATHGoogle Scholar
  27. 27.
    Shrinivasan, Y.B., van Wijk, J.J.: Supporting exploration awareness in information visualization. IEEE Comput. Graph. Appl. 29(5), 34–43 (2009)CrossRefGoogle Scholar
  28. 28.
    Tam, G.K.L., Kothari, V., Chen, M.: An analysis of machine-and human-analytics in classification. IEEE Trans. Vis. Comput. Graph 23(1), 71–80 (2016)CrossRefGoogle Scholar
  29. 29.
    Thomas, J.J., Cook, K.A.: A visual analytics agenda. IEEE Comput. Graph. Appl. 26(1), 10–13 (2006)CrossRefGoogle Scholar
  30. 30.
    Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc. Ser. B (Methodological) 58(1), 267–288 (1996).
  31. 31.
    Tukey, J.: The technical tools of statistics. Am. Stat. 19, 23–28 (1965)Google Scholar
  32. 32.
    Yang, D., Xie, Z., Rundensteiner, E.A., Ward, M.O.: Managing discoveries in the visual analytics process. SIGKDD Explor. Newsl. 9(2), 22–29 (2007).

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  1. 1.VRVis Research CenterViennaAustria
  2. 2.AVL-AST d.o.o.ZagrebCroatia
  3. 3.University of BergenBergenNorway

Personalised recommendations