Skip to main content

An Improved Anisotropic Kernels Surface Reconstruction Method for Multiphase Fluid

  • Conference paper
  • First Online:
  • 1188 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10451))

Abstract

This paper improves the anisotropic kernels surface reconstruction method and apples it to multiphase immiscible fluid surface reconstruction. An unexpected phenomenon appears when using the anisotropic kernels surface reconstruction directly (e.g. the gap and overlap at the interface of multiphase fluid surface). We eliminate the gap by considering the neighbor particles of other phase fluid in the kernels function and eliminate the overlap by signed color field in the marching cube process. The improved method will be able to reconstruct a common surface at the interface of the multiphase fluid.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Müller, M.: Fast and robust tracking of fluid surfaces. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 237–245. ACM (2009)

    Google Scholar 

  2. Müller, M., Solenthaler, B., Keiser, R., et al.: Particle-based fluid-fluid interaction. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 237–244. ACM (2005)

    Google Scholar 

  3. Adams, B., Pauly, M., Keiser, R., et al.: Adaptively sampled particle fluids. In: ACM Transactions on Graphics (TOG), vol. 26, no. 3, p. 48. ACM (2007)

    Google Scholar 

  4. Blinn, J.F.: A generalization of algebraic surface drawing. ACM Trans. Graph. (TOG) 1(3), 235–256 (1982)

    Article  Google Scholar 

  5. Monaghan, J.J., Gingold, R.A.: Shock simulation by the particle method SPH. J. Comput. Phys. 52(2), 374–389 (1983)

    Article  MATH  Google Scholar 

  6. Zhu, Y., Bridson, R.: Animating sand as a fluid. ACM Trans. Graph. (TOG) 24(3), 965–972 (2005)

    Article  Google Scholar 

  7. Williams, B.W.: Fluid surface reconstruction from particles. University of British Columbia (2008)

    Google Scholar 

  8. Yu, J., Turk, G.: Reconstructing surfaces of particle-based fluids using anisotropic kernels. ACM Trans. Graph. (TOG) 32(1), 5 (2013)

    Article  MATH  Google Scholar 

  9. Bhatacharya, H., Gao, Y., Bargteil, A.: A level-set method for skinning animated particle data. In: Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 17–24. ACM (2011)

    Google Scholar 

  10. Becker, M., Teschner, M.: Weakly compressible SPH for free surface flows. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 209–217. Eurographics Association (2007)

    Google Scholar 

  11. Clavet, S., Beaudoin, P., Poulin, P.: Particle-based viscoelastic fluid simulation. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 219–228. ACM (2005)

    Google Scholar 

  12. Premžoe, S., Tasdizen, T., Bigler, J., et al.: Particle‐based simulation of fluids. In: Computer Graphics Forum, vol. 22, no. 3, pp. 401–410. Blackwell Publishing, Inc. (2003)

    Google Scholar 

  13. Solenthaler, B., Pajarola, R.: Density contrast SPH interfaces. In: Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 211–218. Eurographics Association (2008)

    Google Scholar 

  14. Wilhelms, J., Van Gelder, A.: Topological considerations in isosurface generation extended abstract. ACM (1990)

    Google Scholar 

  15. Heiden, W., Goetze, T., Brickmann, J.: Fast generation of molecular surfaces from 3D data fields with an enhanced “marching cube” algorithm. J. Comput. Chem. 14(2), 246–250 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lipeng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ban, X., Wang, L., Wang, X., Zhang, Y. (2017). An Improved Anisotropic Kernels Surface Reconstruction Method for Multiphase Fluid. In: Luo, Y. (eds) Cooperative Design, Visualization, and Engineering. CDVE 2017. Lecture Notes in Computer Science(), vol 10451. Springer, Cham. https://doi.org/10.1007/978-3-319-66805-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66805-5_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66804-8

  • Online ISBN: 978-3-319-66805-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics