A DNA Neural Network Constructed from Molecular Variable Gain Amplifiers

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10467)


Biological nucleic acids have important roles as diagnostic markers for disease. The detection of just one molecular marker, such as a DNA sequence carrying a single nucleotide variant (SNV), can sometimes be indicative of a disease state. However, a reliable diagnosis and treatment decision often requires interpreting a combination of markers via complex algorithms. Here, we describe a diagnostic technology based on DNA strand displacement that combines single nucleotide specificity with the ability to interpret the information encoded in panels of single-stranded nucleic acids through a molecular neural network computation. Our system is constructed around a single building block—a catalytic amplifier with a competitive inhibitor or “sink.” In previous work, we demonstrated that such a system can be used to reliably detect SNVs in single stranded nucleic acids. Here, we show that these same building blocks can be reconfigured to create an amplification system with adjustable gain \(\alpha \). That is, the concentration of an output signal produced is exactly \(\alpha \) times larger than the concentration of input added initially, and the value of \(\alpha \) can be adjusted experimentally. Finally, we demonstrate that variable gain amplification and mismatch discrimination elements can be combined into a two-input neural network classifier. Together, our results suggest a novel approach for engineering molecular classifier circuits with predictable behaviors.


DNA strand displacement Linear classifier Variable gain amplifier Neural network microRNA Competitive inhibition 



This work was supported through the NSF grant CCF-1317653 to GS.


  1. 1.
    Levine, E., Zhang, Z., Kuhlman, T., Hwa, T.: Quantitative characteristics of gene regulation by small RNA. PLoS Biol. 5, e229 (2007)CrossRefGoogle Scholar
  2. 2.
    Sprinzak, D., Lakhanpal, A., LeBon, L., Santat, L.A., Fontes, M.E., Anderson, G.A., Garcia-Ojalvo, J., Elowitz, M.B.: Cis-interactions between Notch and Delta generate mutually exclusive signalling states. Nature 465, 86–90 (2010)CrossRefGoogle Scholar
  3. 3.
    Zhang, D.Y., Seelig, G.: DNA-based fixed gain amplifiers and linear classifier circuits. In: Sakakibara, Y., Mi, Y. (eds.) DNA 2010. LNCS, vol. 6518, pp. 176–186. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-18305-8_16 CrossRefGoogle Scholar
  4. 4.
    Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3, 103–113 (2011)CrossRefGoogle Scholar
  5. 5.
    Yurke, B., Turberfield, A.J., Mills, A.P., Simmel, F.C., Neumann, J.L.: A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000)CrossRefGoogle Scholar
  6. 6.
    Yurke, B., Mills, A.P.: Using DNA to power nanostructures. Genet. Program Evolvable Mach. 4, 111–122 (2003)CrossRefGoogle Scholar
  7. 7.
    Zhang, D.Y., Winfree, E.: Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 131, 17303–17314 (2009)CrossRefGoogle Scholar
  8. 8.
    Seelig, G., Yurke, B., Winfree, E.: Catalyzed relaxation of a metastable DNA fuel. J. Am. Chem. Soc. 128, 12211–12220 (2006)CrossRefGoogle Scholar
  9. 9.
    Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 314, 1585–1588 (2006)CrossRefGoogle Scholar
  10. 10.
    Dirks, R.M., Pierce, N.A.: Triggered amplification by hybridization chain reaction. Proc. Natl. Acad. Sci. USA 101, 15275–15278 (2004)CrossRefGoogle Scholar
  11. 11.
    Turberfield, A.J., Mitchell, J., Yurke, B., Mills, A.P., Blakey, M., Simmel, F.C.: DNA fuel for free-running nanomachines. Phys. Rev. Lett. 90, 118102 (2003)CrossRefGoogle Scholar
  12. 12.
    Zhang, D.Y., Turberfield, A.J., Yurke, B., Winfree, E.: Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318, 1121–1125 (2007)CrossRefGoogle Scholar
  13. 13.
    Li, Q., Luan, G., Guo, Q., Liang, J.: A new class of homogeneous nucleic acid probes based on specific displacement hybridization. Nucleic Acids Res. 30, e5–e5 (2002)CrossRefGoogle Scholar
  14. 14.
    Chen, S.X., Seelig, G.: An engineered kinetic amplification mechanism for single nucleotide variant discrimination by DNA hybridization probes. J. Am. Chem. Soc. 138, 5076–5086 (2016)CrossRefGoogle Scholar
  15. 15.
    Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332, 1196–1201 (2011)CrossRefGoogle Scholar
  16. 16.
    Qian, L., Winfree, E., Bruck, J.: Neural network computation with DNA strand displacement cascades. Nature 475, 368–372 (2011)CrossRefGoogle Scholar
  17. 17.
    Lakin, M.R., Stefanovic, D.: Supervised learning in adaptive DNA strand displacement networks. ACS Synth. Biol. 5, 885–897 (2016)CrossRefzbMATHGoogle Scholar
  18. 18.
    Roush, S., Slack, F.J.: The let-7 family of microRNAs. Trends Cell Biol. 18, 505–516 (2008)CrossRefGoogle Scholar
  19. 19.
    Rosenfeld, N., Aharonov, R., Meiri, E., Rosenwald, S., Spector, Y., Zepeniuk, M., Benjamin, H., Shabes, N., Tabak, S., Levy, A., et al.: MicroRNAs accurately identify cancer tissue origin. Nat. Biotechnol. 26, 462–469 (2008)CrossRefGoogle Scholar
  20. 20.
    Price, N.D., Trent, J., El-Naggar, A.K., Cogdell, D., Taylor, E., Hunt, K.K., Pollock, R.E., Hood, L., Shmulevich, I., Zhang, W.: Highly accurate two-gene classifier for differentiating gastrointestinal stromal tumors and leiomyosarcomas. Proc. Natl. Acad. Sci. USA 104, 3414–3419 (2007)CrossRefGoogle Scholar
  21. 21.
    Chen, Y.J., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D., Seelig, G.: Programmable chemical controllers made from DNA. Nat. Nanotechnol. 8, 755–762 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of WashingtonSeattleUSA

Personalised recommendations