Advertisement

The Design Space of Strand Displacement Cascades with Toehold-Size Clamps

  • Boya WangEmail author
  • Chris Thachuk
  • Andrew D. Ellington
  • David SoloveichikEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10467)

Abstract

DNA strand displacement cascades have proven to be a uniquely flexible and programmable primitive for constructing molecular logic circuits, smart structures and devices, and for systems with complex autonomously generated dynamics. Limiting their utility, however, strand displacement systems are susceptible to the spurious release of output even in the absence of the proper combination of inputs—so-called leak. A common mechanism for reducing leak involves clamping the ends of helices to prevent fraying, and thereby kinetically blocking the initiation of undesired displacement. Since a clamp must act as the incumbent toehold for toehold exchange, clamps cannot be stronger than a toehold. In this paper we systematize the properties of the simplest of strand displacement cascades (a translator) with toehold-size clamps. Surprisingly, depending on a few basic parameters, we find a rich and diverse landscape for desired and undesired properties and trade-offs between them. Initial experiments demonstrate a significant reduction of leak.

References

  1. 1.
    Chen, Y.-J., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D., Seelig, G.: Programmable chemical controllers made from DNA. Nature Nanotechnol. 8(10), 755–762 (2013)CrossRefGoogle Scholar
  2. 2.
    Jiang, Y.S., Bhadra, S., Li, B., Ellington, A.D.: Mismatches improve the performance of strand-displacement nucleic acid circuits. Angew. Chem. 126(7), 1876–1879 (2014)Google Scholar
  3. 3.
    Olson, X., Kotani, S., Padilla, J.E., Hallstrom, N., Goltry, S., Lee, J., Yurke, B., Hughes, W.L., Graugnard, E.: Availability: a metric for nucleic acid strand displacement systems. ACS Synth. Biol. 6(1), 84–93 (2017)Google Scholar
  4. 4.
    Omabegho, T., Sha, R., Seeman, N.C.: A bipedal DNA Brownian motor with coordinated legs. Science 324(5923), 67–71 (2009)Google Scholar
  5. 5.
    Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332(6034), 1196–1201 (2011)CrossRefGoogle Scholar
  6. 6.
    Rudchenko, M., Taylor, S., Pallavi, P., Dechkovskaia, A., Khan, S., Butler Jr., V.P., Rudchenko, S., Stojanovic, M.N.: Autonomous molecular cascades for evaluation of cell surfaces. Nature Nanotechnol. 8(8), 580–586 (2013)Google Scholar
  7. 7.
    SantaLucia, Jr., J., Hicks, D.: The thermodynamics of DNA structural motifs. Ann. Rev. Biophys. Biomol. Struct. 33, 415–440 (2004)Google Scholar
  8. 8.
    Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 314(5805), 1585–1588 (2006)Google Scholar
  9. 9.
    Srinivas, N.: Programming chemical kinetics: engineering dynamic reaction networks with DNA strand displacement. Ph.D. thesis, California Institute of Technology (2015)Google Scholar
  10. 10.
    Thachuk, C., Winfree, E., Soloveichik, D.: Leakless DNA strand displacement systems. In: Phillips, A., Yin, P. (eds.) DNA 2015. LNCS, vol. 9211, pp. 133–153. Springer, Cham (2015). doi: 10.1007/978-3-319-21999-8_9 CrossRefGoogle Scholar
  11. 11.
    Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement reactions. Nature Chem. 3(2), 103–113 (2011)CrossRefGoogle Scholar
  12. 12.
    Zhang, D.Y., Winfree, E.: Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 131(47), 17303–17314 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of Texas at AustinAustinUSA
  2. 2.California Institute of TechnologyPasadenaUSA

Personalised recommendations