Unknotted Strand Routings of Triangulated Meshes

  • Abdulmelik MohammedEmail author
  • Mustafa Hajij
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10467)


In molecular self-assembly such as DNA origami, a circular strand’s topological routing determines the feasibility of a design to assemble to a target. In this regard, the Chinese-postman DNA scaffold routings of Benson et al. (2015) only ensure the unknottedness of the scaffold strand for triangulated topological spheres. In this paper, we present a cubic-time \(\frac{5}{3}-\)approximation algorithm to compute unknotted Chinese-postman scaffold routings on triangulated orientable surfaces of higher genus. Our algorithm guarantees every edge is routed at most twice, hence permitting low-packed designs suitable for physiological conditions.


DNA origami Knot theory Graph theory Chinese postman problem 


  1. 1.
    Abrham, J., Kotzig, A.: Construction of planar Eulerian multigraphs. In: Proceedings of Tenth Southeastern Conference on Combinatorics, Graph Theory, and Computing, pp. 123–130 (1979)Google Scholar
  2. 2.
    Benson, E., Mohammed, A., Bosco, A., Teixeira, A.I., Orponen, P., Högberg, B.: Computer-aided production of scaffolded DNA nanostructures from flat sheet meshes. Angew. Chem. Int. Ed. 55(31), 8869–8872 (2016)CrossRefGoogle Scholar
  3. 3.
    Benson, E., Mohammed, A., Gardell, J., Masich, S., Czeizler, E., Orponen, P., Högberg, B.: DNA rendering of polyhedral meshes at the nanoscale. Nature 523(7561), 441–444 (2015)CrossRefGoogle Scholar
  4. 4.
    Chen, J., Seeman, N.C.: Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350(6319), 631 (1991)CrossRefGoogle Scholar
  5. 5.
    Dey, T.K., Schipper, H.: A new technique to compute polygonal schema for 2-manifolds with application to null-homotopy detection. Discrete Comput. Geom. 14(1), 93–110 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Douglas, S.M., Dietz, H., Liedl, T., Högberg, B., Graf, F., Shih, W.M.: Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459(7245), 414–418 (2009)CrossRefGoogle Scholar
  7. 7.
    Edmonds, J., Johnson, E.L.: Matching, Euler tours and the Chinese postman. Math. Program. 5(1), 88–124 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ellis-Monaghan, J.A., Pangborn, G., Seeman, N.C., Blakeley, S., Disher, C., Falcigno, M., Healy, B., Morse, A., Singh, B., Westland, M.: Design tools for reporter strands and DNA origami scaffold strands. Theoret. Comput. Sci. 671, 69–78 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Erickson, J., Har-Peled, S.: Optimally cutting a surface into a disk. Discrete Comput. Geom. 31(1), 37–59 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Euler, L.: Solutio problematis ad geometriam situs pertinentis. Commentarii Academiae Scientiarum Petropolitanae 8, 128–140 (1741)Google Scholar
  11. 11.
    Fleischner, H.: Eulerian Graphs and Related Topics, vol. 1. Elsevier, Amsterdam (1990)Google Scholar
  12. 12.
    Floater, M.S.: Parametrization and smooth approximation of surface triangulations. Comput. Aided Geom. Des. 14(3), 231–250 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Goodman, R.P., Schaap, I.A., Tardin, C.F., Erben, C.M., Berry, R.M., Schmidt, C.F., Turberfield, A.J.: Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310(5754), 1661–1665 (2005)CrossRefGoogle Scholar
  14. 14.
    Gradišar, H., Božič, S., Doles, T., Vengust, D., Hafner-Bratkovič, I., Mertelj, A., Webb, B., Šali, A., Klavžar, S., Jerala, R.: Design of a single-chain polypeptide tetrahedron assembled from coiled-coil segments. Nature Chem. Biol. 9(6), 362–366 (2013)CrossRefGoogle Scholar
  15. 15.
    Gross, J., Yellen, J.: Handbook of Graph Theory. Discrete Mathematics and Its Applications. CRC Press, Boca Raton (2004)zbMATHGoogle Scholar
  16. 16.
    He, Y., Ye, T., Su, M., Zhang, C., Ribbe, A.E., Jiang, W., Mao, C.: Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 452(7184), 198–201 (2008)CrossRefGoogle Scholar
  17. 17.
    Hierholzer, C., Wiener, C.: Über die Möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung zu umfahren. Mathematische Annalen 6(1), 30–32 (1873)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Jonoska, N., Seeman, N.C., Wu, G.: On existence of reporter strands in DNA-based graph structures. Theoret. Comput. Sci. 410(15), 1448–1460 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Jungnickel, D., Schade, T.: Graphs, Networks and Algorithms. Springer, New York (2008)Google Scholar
  20. 20.
    Ke, Y., Ong, L.L., Shih, W.M., Yin, P.: Three-dimensional structures self-assembled from DNA bricks. Science 338(6111), 1177–1183 (2012)CrossRefGoogle Scholar
  21. 21.
    Klavzar, S., Rus, J.: Stable traces as a model for self-assembly of polypeptide nanoscale polyhedrons. MATCH Commun. Math. Comput. Chem. 70, 317–330 (2013)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Kočar, V., Schreck, J.S., Čeru, S., Gradišar, H., Bašić, N., Pisanski, T., Doye, J.P., Jerala, R.: Design principles for rapid folding of knotted DNA nanostructures. Nature Commun. 7, 1–18 (2016)Google Scholar
  23. 23.
    Lee, J.: Introduction to Topological Manifolds, vol. 940. Springer Science & Business Media, New York (2010)Google Scholar
  24. 24.
    Lickorish, W.R.: An Introduction to Knot Theory, vol. 175. Springer Science & Business Media, New York (2012)Google Scholar
  25. 25.
    Morse, A., Adkisson, W., Greene, J., Perry, D., Smith, B., Ellis-Monaghan, J., Pangborn, G.: DNA origami and unknotted A-trails in torus graphs. arXiv preprint arXiv:1703.03799 (2017)
  26. 26.
    Rolfsen, D.: Knots and Links, vol. 346. American Mathematical Society, Providence (1976)Google Scholar
  27. 27.
    Rothemund, P.W.: Folding DNA to create nanoscale shapes and patterns. Nature 440(7082), 297–302 (2006)CrossRefGoogle Scholar
  28. 28.
    Rothemund, P.W., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol. 2(12), e424 (2004)CrossRefGoogle Scholar
  29. 29.
    Seeman, N.C.: Nucleic acid junctions and lattices. J. Theoret. Biol. 99(2), 237–247 (1982)CrossRefGoogle Scholar
  30. 30.
    Shih, W.M., Quispe, J.D., Joyce, G.F.: A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 427(6975), 618–621 (2004)CrossRefGoogle Scholar
  31. 31.
    Singmaster, D., Grossman, J.W.: E2897. Am. Math. Mon. 90(4), 287–288 (1983)CrossRefGoogle Scholar
  32. 32.
    Tsai, M.T., West, D.B.: A new proof of 3-colorability of Eulerian triangulations. Ars Mathematica Contemporanea 4(1), 73–77 (2011)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Veneziano, R., Ratanalert, S., Zhang, K., Zhang, F., Yan, H., Chiu, W., Bathe, M.: Designer nanoscale DNA assemblies programmed from the top down. Science 352(6293), 1534–1534 (2016)CrossRefGoogle Scholar
  34. 34.
    Wei, B., Dai, M., Yin, P.: Complex shapes self-assembled from single-stranded DNA tiles. Nature 485(7400), 623–626 (2012)CrossRefGoogle Scholar
  35. 35.
    Wu, G., Jonoska, N., Seeman, N.C.: Construction of a DNA nano-object directly demonstrates computation. Biosystems 98(2), 80–84 (2009)CrossRefGoogle Scholar
  36. 36.
    Zheng, J., Birktoft, J.J., Chen, Y., Wang, T., Sha, R., Constantinou, P.E., Ginell, S.L., Mao, C., Seeman, N.C.: From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature 461(7260), 74–77 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Aalto UniversityEspooFinland
  2. 2.University of South FloridaTampaUSA

Personalised recommendations